Abstract:Accurate prediction of enzyme kinetic parameters is essential for understanding catalytic mechanisms and guiding enzyme engineering.However, existing deep learning-based enzyme-substrate interaction (ESI) predictors often exhibit performance degradation on sequence-divergent, out-of-distribution (OOD) cases, limiting robustness under biologically relevant perturbations.We propose O$^2$DENet, a lightweight, plug-and-play module that enhances OOD generalization via biologically and chemically informed perturbation augmentation and invariant representation learning.O$^2$DENet introduces enzyme-substrate perturbations and enforces consistency between original and augmented enzyme-substrate-pair representations to encourage invariance to distributional shifts.When integrated with representative ESI models, O$^2$DENet consistently improves predictive performance for both $k_{cat}$ and $K_m$ across stringent sequence-identity-based OOD benchmarks, achieving state-of-the-art results among the evaluated methods in terms of accuracy and robustness metrics.Overall, O$^2$DENet provides a general and effective strategy to enhance the stability and deployability of data-driven enzyme kinetics predictors for real-world enzyme engineering applications.
Abstract:Activity cliff prediction is a critical task in drug discovery and material design. Existing computational methods are limited to handling single binding targets, which restricts the applicability of these prediction models. In this paper, we present the Multi-Grained Target Perception network (MTPNet) to incorporate the prior knowledge of interactions between the molecules and their target proteins. Specifically, MTPNet is a unified framework for activity cliff prediction, which consists of two components: Macro-level Target Semantic (MTS) guidance and Micro-level Pocket Semantic (MPS) guidance. By this way, MTPNet dynamically optimizes molecular representations through multi-grained protein semantic conditions. To our knowledge, it is the first time to employ the receptor proteins as guiding information to effectively capture critical interaction details. Extensive experiments on 30 representative activity cliff datasets demonstrate that MTPNet significantly outperforms previous approaches, achieving an average RMSE improvement of 18.95% on top of several mainstream GNN architectures. Overall, MTPNet internalizes interaction patterns through conditional deep learning to achieve unified predictions of activity cliffs, helping to accelerate compound optimization and design. Codes are available at: https://github.com/ZishanShu/MTPNet.




Abstract:Protein function prediction is currently achieved by encoding its sequence or structure, where the sequence-to-function transcendence and high-quality structural data scarcity lead to obvious performance bottlenecks. Protein domains are "building blocks" of proteins that are functionally independent, and their combinations determine the diverse biological functions. However, most existing studies have yet to thoroughly explore the intricate functional information contained in the protein domains. To fill this gap, we propose a synergistic integration approach for a function-aware domain representation, and a domain-joint contrastive learning strategy to distinguish different protein functions while aligning the modalities. Specifically, we associate domains with the GO terms as function priors to pre-train domain embeddings. Furthermore, we partition proteins into multiple sub-views based on continuous joint domains for contrastive training under the supervision of a novel triplet InfoNCE loss. Our approach significantly and comprehensively outperforms the state-of-the-art methods on various benchmarks, and clearly differentiates proteins carrying distinct functions compared to the competitor.