Abstract:Large Language Models (LLMs) in multi-turn conversations often suffer from a ``lost-in-conversation'' phenomenon, where they struggle to recover from early incorrect assumptions, particularly when users provide ambiguous initial instructions. We find that standard post-training techniques like Reinforcement Learning with Verifiable Rewards (RLVR) exacerbate this issue by rewarding confident, direct answers, thereby inducing overconfidence and discouraging the model from seeking clarification. To address this, we propose Illocution-Calibrated Policy Optimization (ICPO), a novel training framework that sensitizes the model to instruction ambiguity. ICPO augments the training corpus with underspecified prompts and conditions the reward signal on the user's illocutionary intent, rewarding the model for expressing uncertainty or asking for clarification when faced with ambiguity. Experiments demonstrate that ICPO fosters appropriate humility, yielding a substantial average improvement of 75\% in multi-turn conversation, while preserving robust performance on single-turn benchmarks. Our work presents a practical path toward more robust and collaborative conversational AI that can better navigate the nuances of human interaction.
Abstract:Existing invasive (backdoor) fingerprints suffer from high-perplexity triggers that are easily filtered, fixed response patterns exposed by heuristic detectors, and spurious activations on benign inputs. We introduce \textsc{ForgetMark}, a stealthy fingerprinting framework that encodes provenance via targeted unlearning. It builds a compact, human-readable key--value set with an assistant model and predictive-entropy ranking, then trains lightweight LoRA adapters to suppress the original values on their keys while preserving general capabilities. Ownership is verified under black/gray-box access by aggregating likelihood and semantic evidence into a fingerprint success rate. By relying on probabilistic forgetting traces rather than fixed trigger--response patterns, \textsc{ForgetMark} avoids high-perplexity triggers, reduces detectability, and lowers false triggers. Across diverse architectures and settings, it achieves 100\% ownership verification on fingerprinted models while maintaining standard performance, surpasses backdoor baselines in stealthiness and robustness to model merging, and remains effective under moderate incremental fine-tuning. Our code and data are available at \href{https://github.com/Xuzhenhua55/ForgetMark}{https://github.com/Xuzhenhua55/ForgetMark}.
Abstract:The absence of a fully decentralized, verifiable, and privacy-preserving communication protocol for autonomous agents remains a core challenge in decentralized computing. Existing systems often rely on centralized intermediaries, which reintroduce trust bottlenecks, or lack decentralized identity-resolution mechanisms, limiting persistence and cross-network interoperability. We propose the Decentralized Interstellar Agent Protocol (DIAP), a novel framework for agent identity and communication that enables persistent, verifiable, and trustless interoperability in fully decentralized environments. DIAP binds an agent's identity to an immutable IPFS or IPNS content identifier and uses zero-knowledge proofs (ZKP) to dynamically and statelessly prove ownership, removing the need for record updates. We present a Rust SDK that integrates Noir (for zero-knowledge proofs), DID-Key, IPFS, and a hybrid peer-to-peer stack combining Libp2p GossipSub for discovery and Iroh for high-performance, QUIC based data exchange. DIAP introduces a zero-dependency ZKP deployment model through a universal proof manager and compile-time build script that embeds a precompiled Noir circuit, eliminating the need for external ZKP toolchains. This enables instant, verifiable, and privacy-preserving identity proofs. This work establishes a practical, high-performance foundation for next-generation autonomous agent ecosystems and agent-to-agent (A to A) economies.
Abstract:Invoking external tools enables Large Language Models (LLMs) to perform complex, real-world tasks, yet selecting the correct tool from large, hierarchically-structured libraries remains a significant challenge. The limited context windows of LLMs and noise from irrelevant options often lead to low selection accuracy and high computational costs. To address this, we propose the Hierarchical Gaussian Mixture Framework (HGMF), a probabilistic pruning method for scalable tool invocation. HGMF first maps the user query and all tool descriptions into a unified semantic space. The framework then operates in two stages: it clusters servers using a Gaussian Mixture Model (GMM) and filters them based on the query's likelihood. Subsequently, it applies the same GMM-based clustering and filtering to the tools associated with the selected servers. This hierarchical process produces a compact, high-relevance candidate set, simplifying the final selection task for the LLM. Experiments on a public dataset show that HGMF significantly improves tool selection accuracy while reducing inference latency, confirming the framework's scalability and effectiveness for large-scale tool libraries.
Abstract:Underwater 3D scene reconstruction faces severe challenges from light absorption, scattering, and turbidity, which degrade geometry and color fidelity in traditional methods like Neural Radiance Fields (NeRF). While NeRF extensions such as SeaThru-NeRF incorporate physics-based models, their MLP reliance limits efficiency and spatial resolution in hazy environments. We introduce UW-3DGS, a novel framework adapting 3D Gaussian Splatting (3DGS) for robust underwater reconstruction. Key innovations include: (1) a plug-and-play learnable underwater image formation module using voxel-based regression for spatially varying attenuation and backscatter; and (2) a Physics-Aware Uncertainty Pruning (PAUP) branch that adaptively removes noisy floating Gaussians via uncertainty scoring, ensuring artifact-free geometry. The pipeline operates in training and rendering stages. During training, noisy Gaussians are optimized end-to-end with underwater parameters, guided by PAUP pruning and scattering modeling. In rendering, refined Gaussians produce clean Unattenuated Radiance Images (URIs) free from media effects, while learned physics enable realistic Underwater Images (UWIs) with accurate light transport. Experiments on SeaThru-NeRF and UWBundle datasets show superior performance, achieving PSNR of 27.604, SSIM of 0.868, and LPIPS of 0.104 on SeaThru-NeRF, with ~65% reduction in floating artifacts.
Abstract:Large Language Models (LLMs) have become increasingly prevalent across various sectors, raising critical concerns about model ownership and intellectual property protection. Although backdoor-based fingerprinting has emerged as a promising solution for model authentication, effective attacks for removing these fingerprints remain largely unexplored. Therefore, we present Mismatched Eraser (MEraser), a novel method for effectively removing backdoor-based fingerprints from LLMs while maintaining model performance. Our approach leverages a two-phase fine-tuning strategy utilizing carefully constructed mismatched and clean datasets. Through extensive evaluation across multiple LLM architectures and fingerprinting methods, we demonstrate that MEraser achieves complete fingerprinting removal while maintaining model performance with minimal training data of fewer than 1,000 samples. Furthermore, we introduce a transferable erasure mechanism that enables effective fingerprinting removal across different models without repeated training. In conclusion, our approach provides a practical solution for fingerprinting removal in LLMs, reveals critical vulnerabilities in current fingerprinting techniques, and establishes comprehensive evaluation benchmarks for developing more resilient model protection methods in the future.
Abstract:Safety alignment in large language models (LLMs) is achieved through fine-tuning mechanisms that regulate neuron activations to suppress harmful content. In this work, we propose a novel approach to induce disalignment by identifying and modifying the neurons responsible for safety constraints. Our method consists of three key steps: Neuron Activation Analysis, where we examine activation patterns in response to harmful and harmless prompts to detect neurons that are critical for distinguishing between harmful and harmless inputs; Similarity-Based Neuron Identification, which systematically locates the neurons responsible for safe alignment; and Neuron Relearning for Safety Removal, where we fine-tune these selected neurons to restore the model's ability to generate previously restricted responses. Experimental results demonstrate that our method effectively removes safety constraints with minimal fine-tuning, highlighting a critical vulnerability in current alignment techniques. Our findings underscore the need for robust defenses against adversarial fine-tuning attacks on LLMs.
Abstract:Embodied AI systems, including robots and autonomous vehicles, are increasingly integrated into real-world applications, where they encounter a range of vulnerabilities stemming from both environmental and system-level factors. These vulnerabilities manifest through sensor spoofing, adversarial attacks, and failures in task and motion planning, posing significant challenges to robustness and safety. Despite the growing body of research, existing reviews rarely focus specifically on the unique safety and security challenges of embodied AI systems. Most prior work either addresses general AI vulnerabilities or focuses on isolated aspects, lacking a dedicated and unified framework tailored to embodied AI. This survey fills this critical gap by: (1) categorizing vulnerabilities specific to embodied AI into exogenous (e.g., physical attacks, cybersecurity threats) and endogenous (e.g., sensor failures, software flaws) origins; (2) systematically analyzing adversarial attack paradigms unique to embodied AI, with a focus on their impact on perception, decision-making, and embodied interaction; (3) investigating attack vectors targeting large vision-language models (LVLMs) and large language models (LLMs) within embodied systems, such as jailbreak attacks and instruction misinterpretation; (4) evaluating robustness challenges in algorithms for embodied perception, decision-making, and task planning; and (5) proposing targeted strategies to enhance the safety and reliability of embodied AI systems. By integrating these dimensions, we provide a comprehensive framework for understanding the interplay between vulnerabilities and safety in embodied AI.




Abstract:Large Language Models (LLMs) like GPT-4, LLaMA, and Qwen have demonstrated remarkable success across a wide range of applications. However, these models remain inherently vulnerable to prompt injection attacks, which can bypass existing safety mechanisms, highlighting the urgent need for more robust attack detection methods and comprehensive evaluation benchmarks. To address these challenges, we introduce GenTel-Safe, a unified framework that includes a novel prompt injection attack detection method, GenTel-Shield, along with a comprehensive evaluation benchmark, GenTel-Bench, which compromises 84812 prompt injection attacks, spanning 3 major categories and 28 security scenarios. To prove the effectiveness of GenTel-Shield, we evaluate it together with vanilla safety guardrails against the GenTel-Bench dataset. Empirically, GenTel-Shield can achieve state-of-the-art attack detection success rates, which reveals the critical weakness of existing safeguarding techniques against harmful prompts. For reproducibility, we have made the code and benchmarking dataset available on the project page at https://gentellab.github.io/gentel-safe.github.io/.
Abstract:Training Large Language Models (LLMs) requires immense computational power and vast amounts of data. As a result, protecting the intellectual property of these models through fingerprinting is essential for ownership authentication. While adding fingerprints to LLMs through fine-tuning has been attempted, it remains costly and unscalable. In this paper, we introduce FP-VEC, a pilot study on using fingerprint vectors as an efficient fingerprinting method for LLMs. Our approach generates a fingerprint vector that represents a confidential signature embedded in the model, allowing the same fingerprint to be seamlessly incorporated into an unlimited number of LLMs via vector addition. Results on several LLMs show that FP-VEC is lightweight by running on CPU-only devices for fingerprinting, scalable with a single training and unlimited fingerprinting process, and preserves the model's normal behavior. The project page is available at https://fingerprintvector.github.io .