Abstract:Recent Large Vision-Language Models (LVLMs) have advanced multi-modal understanding by incorporating finer-grained visual perception and encoding. However, such methods incur significant computational costs due to longer visual token sequences, posing challenges for real-time deployment. To mitigate this, prior studies have explored pruning unimportant visual tokens either at the output layer of the visual encoder or at the early layers of the language model. In this work, we revisit these design choices and reassess their effectiveness through comprehensive empirical studies of how visual tokens are processed throughout the visual encoding and language decoding stages. Guided by these insights, we propose VScan, a two-stage visual token reduction framework that addresses token redundancy by: (1) integrating complementary global and local scans with token merging during visual encoding, and (2) introducing pruning at intermediate layers of the language model. Extensive experimental results across four LVLMs validate the effectiveness of VScan in accelerating inference and demonstrate its superior performance over current state-of-the-arts on sixteen benchmarks. Notably, when applied to LLaVA-NeXT-7B, VScan achieves a 2.91$\times$ speedup in prefilling and a 10$\times$ reduction in FLOPs, while retaining 95.4% of the original performance.
Abstract:Although existing model editing methods perform well in recalling exact edit facts, they often struggle in complex scenarios that require deeper semantic understanding rather than mere knowledge regurgitation. Leveraging the strong contextual reasoning abilities of large language models (LLMs), in-context learning (ICL) becomes a promising editing method by comprehending edit information through context encoding. However, this method is constrained by the limited context window of LLMs, leading to degraded performance and efficiency as the number of edits increases. To overcome this limitation, we propose InComeS, a flexible framework that enhances LLMs' ability to process editing contexts through explicit compression and selection mechanisms. Specifically, InComeS compresses each editing context into the key-value (KV) cache of a special gist token, enabling efficient handling of multiple edits without being restricted by the model's context window. Furthermore, specialized cross-attention modules are added to dynamically select the most relevant information from the gist pools, enabling adaptive and effective utilization of edit information. We conduct experiments on diverse model editing benchmarks with various editing formats, and the results demonstrate the effectiveness and efficiency of our method.
Abstract:Web agents powered by Large Language Models (LLMs) show promise for next-generation AI, but their limited reasoning in uncertain, dynamic web environments hinders robust deployment. In this paper, we identify key reasoning skills essential for effective web agents, i.e., reflection & lookahead, branching, and rollback, and curate trajectory data that exemplifies these abilities by reconstructing the agent's (inference-time) reasoning algorithms into chain-of-thought rationales. We conduct experiments in the agent self-improving benchmark, OpenWebVoyager, and demonstrate that distilling salient reasoning patterns into the backbone LLM via simple fine-tuning can substantially enhance its performance. Our approach yields significant improvements across multiple benchmarks, including WebVoyager, Mind2web-live, and SimpleQA (web search), highlighting the potential of targeted reasoning skill enhancement for web agents.
Abstract:Mamba's theoretical infinite-context potential is limited in practice when sequences far exceed training lengths. This work explores unlocking Mamba's long-context memory ability by a simple-yet-effective method, Recall with Reasoning (RwR), by distilling chain-of-thought (CoT) summarization from a teacher model. Specifically, RwR prepends these summarization as CoT prompts during fine-tuning, teaching Mamba to actively recall and reason over long contexts. Experiments on LONGMEMEVAL and HELMET show RwR boosts Mamba's long-context performance against comparable Transformer/hybrid baselines under similar pretraining conditions, while preserving short-context capabilities, all without architectural changes.
Abstract:Agent self-improvement, where the backbone Large Language Model (LLM) of the agent are trained on trajectories sampled autonomously based on their own policies, has emerged as a promising approach for enhancing performance. Recent advancements, particularly in web environments, face a critical limitation: their performance will reach a stagnation point during autonomous learning cycles, hindering further improvement. We argue that this stems from limited exploration of the web environment and insufficient exploitation of pre-trained web knowledge in LLMs. To improve the performance of self-improvement, we propose a novel framework that introduces a co-evolving World Model LLM. This world model predicts the next observation based on the current observation and action within the web environment. Leveraging LLMs' pretrained knowledge of abundant web content, the World Model serves dual roles: (1) as a virtual web server generating self-instructed training data to continuously refine the agent's policy, and (2) as an imagination engine during inference, enabling look-ahead simulation to guide action selection for the agent LLM. Experiments in real-world web environments (Mind2Web-Live, WebVoyager, and GAIA-web) show a 10% performance gain over existing self-evolving agents, demonstrating the efficacy and generalizability of our approach, without using any distillation from more powerful close-sourced models. Our work establishes the necessity of integrating world models into autonomous agent frameworks to unlock sustained adaptability.
Abstract:With recent advancements in large language models, web agents have been greatly improved. However, dealing with complex and dynamic web environments requires more advanced planning and search abilities. Previous studies usually adopt a greedy one-way search strategy, which may struggle to recover from erroneous states. In this work, we enhance web agents with an explicit rollback mechanism, enabling the agent to revert back to a previous state in its navigation trajectory. This mechanism gives the model the flexibility to directly control the search process, leading to an effective and efficient web navigation method. We conduct experiments on two live web navigation benchmarks with zero-shot and fine-tuning settings. The results demonstrate the effectiveness of our proposed approach.
Abstract:Large language models have shown remarkable performance across a wide range of language tasks, owing to their exceptional capabilities in context modeling. The most commonly used method of context modeling is full self-attention, as seen in standard decoder-only Transformers. Although powerful, this method can be inefficient for long sequences and may overlook inherent input structures. To address these problems, an alternative approach is parallel context encoding, which splits the context into sub-pieces and encodes them parallelly. Because parallel patterns are not encountered during training, naively applying parallel encoding leads to performance degradation. However, the underlying reasons and potential mitigations are unclear. In this work, we provide a detailed analysis of this issue and identify that unusually high attention entropy can be a key factor. Furthermore, we adopt two straightforward methods to reduce attention entropy by incorporating attention sinks and selective mechanisms. Experiments on various tasks reveal that these methods effectively lower irregular attention entropy and narrow performance gaps. We hope this study can illuminate ways to enhance context modeling mechanisms.
Abstract:Knowledge Editing (KE) aims to adjust a Large Language Model's (LLM) internal representations and parameters to correct inaccuracies and improve output consistency without incurring the computational expense of re-training the entire model. However, editing commonsense knowledge still faces difficulties, including limited knowledge coverage in existing resources, the infeasibility of annotating labels for an overabundance of commonsense knowledge, and the strict knowledge formats of current editing methods. In this paper, we address these challenges by presenting ConceptEdit, a framework that integrates conceptualization and instantiation into the KE pipeline for LLMs to enhance their commonsense reasoning capabilities. ConceptEdit dynamically diagnoses implausible commonsense knowledge within an LLM using another verifier LLM and augments the source knowledge to be edited with conceptualization for stronger generalizability. Experimental results demonstrate that LLMs enhanced with ConceptEdit successfully generate commonsense knowledge with improved plausibility compared to other baselines and achieve stronger performance across multiple question answering benchmarks.
Abstract:The rapid development of large language and multimodal models has sparked significant interest in using proprietary models, such as GPT-4o, to develop autonomous agents capable of handling real-world scenarios like web navigation. Although recent open-source efforts have tried to equip agents with the ability to explore environments and continuously improve over time, they are building text-only agents in synthetic environments where the reward signals are clearly defined. Such agents struggle to generalize to realistic settings that require multimodal perception abilities and lack ground-truth signals. In this paper, we introduce an open-source framework designed to facilitate the development of multimodal web agent that can autonomously conduct real-world exploration and improve itself. We first train the base model with imitation learning to gain the basic abilities. We then let the agent explore the open web and collect feedback on its trajectories. After that, it further improves its policy by learning from well-performing trajectories judged by another general-purpose model. This exploration-feedback-optimization cycle can continue for several iterations. Experimental results show that our web agent successfully improves itself after each iteration, demonstrating strong performance across multiple test sets.
Abstract:While Large Language Models (LLMs) have showcased remarkable proficiency in reasoning, there is still a concern about hallucinations and unreliable reasoning issues due to semantic associations and superficial logical chains. To evaluate the extent to which LLMs perform robust reasoning instead of relying on superficial logical chains, we propose a new evaluation dataset, the Concept-Reversed Winograd Schema Challenge (CR-WSC), based on the famous Winograd Schema Challenge (WSC) dataset. By simply reversing the concepts to those that are more associated with the wrong answer, we find that the performance of LLMs drops significantly despite the rationale of reasoning remaining the same. Furthermore, we propose Abstraction-of-Thought (AoT), a novel prompt method for recovering adversarial cases to normal cases using conceptual abstraction to improve LLMs' robustness and consistency in reasoning, as demonstrated by experiments on CR-WSC.