Abstract:Text-Video Retrieval (TVR) aims to align and associate relevant video content with corresponding natural language queries. Most existing TVR methods are based on large-scale pre-trained vision-language models (e.g., CLIP). However, due to the inherent plain structure of CLIP, few TVR methods explore the multi-scale representations which offer richer contextual information for a more thorough understanding. To this end, we propose MUSE, a multi-scale mamba with linear computational complexity for efficient cross-resolution modeling. Specifically, the multi-scale representations are generated by applying a feature pyramid on the last single-scale feature map. Then, we employ the Mamba structure as an efficient multi-scale learner to jointly learn scale-wise representations. Furthermore, we conduct comprehensive studies to investigate different model structures and designs. Extensive results on three popular benchmarks have validated the superiority of MUSE.
Abstract:We measure the performance of in-context learning as a function of task novelty and difficulty for open and closed questions. For that purpose, we created a novel benchmark consisting of hard scientific questions, each paired with a context of various relevancy. We show that counter-intuitively, a context that is more aligned with the topic does not always help more than a less relevant context. This effect is especially visible for open questions and questions of high difficulty or novelty. This result reveals a fundamental difference between the treatment of close-form and open-form questions by large-language models and shows a need for a more robust evaluation of in-context learning on the variety of different types of questions. It also poses a new question of how to optimally select a context for large language models, especially in the context of Retrieval Augmented Generation (RAG) systems. Our results suggest that the answer to this question can be highly application-dependent and might be contingent on factors including the format of the question, the perceived difficulty level of the questions, and the novelty or popularity of the information we seek.
Abstract:Recent studies successfully learned static graph embeddings that are structurally fair by preventing the effectiveness disparity of high- and low-degree vertex groups in downstream graph mining tasks. However, achieving structure fairness in dynamic graph embedding remains an open problem. Neglecting degree changes in dynamic graphs will significantly impair embedding effectiveness without notably improving structure fairness. This is because the embedding performance of high-degree and low-to-high-degree vertices will significantly drop close to the generally poorer embedding performance of most slightly changed vertices in the long-tail part of the power-law distribution. We first identify biased structural evolutions in a dynamic graph based on the evolving trend of vertex degree and then propose FairDGE, the first structurally Fair Dynamic Graph Embedding algorithm. FairDGE learns biased structural evolutions by jointly embedding the connection changes among vertices and the long-short-term evolutionary trend of vertex degrees. Furthermore, a novel dual debiasing approach is devised to encode fair embeddings contrastively, customizing debiasing strategies for different biased structural evolutions. This innovative debiasing strategy breaks the effectiveness bottleneck of embeddings without notable fairness loss. Extensive experiments demonstrate that FairDGE achieves simultaneous improvement in the effectiveness and fairness of embeddings.
Abstract:Text-Video Retrieval (TVR) aims to align relevant video content with natural language queries. To date, most state-of-the-art TVR methods learn image-to-video transfer learning based on large-scale pre-trained visionlanguage models (e.g., CLIP). However, fully fine-tuning these pre-trained models for TVR incurs prohibitively expensive computation costs. To this end, we propose to conduct efficient text-video Retrieval with a sparse-andcorrelated AdaPter (RAP), i.e., fine-tuning the pre-trained model with a few parameterized layers. To accommodate the text-video scenario, we equip our RAP with two indispensable characteristics: temporal sparsity and correlation. Specifically, we propose a low-rank modulation module to refine the per-image features from the frozen CLIP backbone, which accentuates salient frames within the video features while alleviating temporal redundancy. Besides, we introduce an asynchronous self-attention mechanism that first selects the top responsive visual patches and augments the correlation modeling between them with learnable temporal and patch offsets. Extensive experiments on four TVR datasets demonstrate that RAP achieves superior or comparable performance compared to the fully fine-tuned counterpart and other parameter-efficient fine-tuning methods.
Abstract:Large language models (LLMs) can elicit social bias during generations, especially when inference with toxic prompts. Controlling the sensitive attributes in generation encounters challenges in data distribution, generalizability, and efficiency. Specifically, fine-tuning and retrieval demand extensive unbiased corpus, while direct prompting requires meticulously curated instructions for correcting the output in multiple rounds of thoughts but poses challenges on memory and inference latency. In this work, we propose the Expert-Guided Extinction of Toxic Tokens for Debiased Generation (EXPOSED) to eliminate the undesired harmful outputs for LLMs without the aforementioned requirements. EXPOSED constructs a debiasing expert based on the abundant toxic corpus to expose and elicit the potentially dangerous tokens. It then processes the output to the LLMs and constructs a fair distribution by suppressing and attenuating the toxic tokens. EXPOSED is evaluated on fairness benchmarks over three LLM families. Extensive experiments demonstrate that compared with other baselines, the proposed EXPOSED significantly reduces the potential social bias while balancing fairness and generation performance.
Abstract:Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation, prompting research efforts towards video LLMs to facilitate human-AI interaction at the video level. However, how to effectively encode and understand videos in video-based dialogue systems remains to be solved. In this paper, we investigate a straightforward yet unexplored question: Can we feed all spatial-temporal tokens into the LLM, thus delegating the task of video sequence modeling to the LLMs? Surprisingly, this simple approach yields significant improvements in video understanding. Based upon this, we propose ST-LLM, an effective video-LLM baseline with Spatial-Temporal sequence modeling inside LLM. Furthermore, to address the overhead and stability issues introduced by uncompressed video tokens within LLMs, we develop a dynamic masking strategy with tailor-made training objectives. For particularly long videos, we have also designed a global-local input module to balance efficiency and effectiveness. Consequently, we harness LLM for proficient spatial-temporal modeling, while upholding efficiency and stability. Extensive experimental results attest to the effectiveness of our method. Through a more concise model and training pipeline, ST-LLM establishes a new state-of-the-art result on VideoChatGPT-Bench and MVBench. Codes have been available at https://github.com/TencentARC/ST-LLM.
Abstract:Videos are prominent learning materials to prepare surgical trainees before they enter the operating room (OR). In this work, we explore techniques to enrich the video-based surgery learning experience. We propose Surgment, a system that helps expert surgeons create exercises with feedback based on surgery recordings. Surgment is powered by a few-shot-learning-based pipeline (SegGPT+SAM) to segment surgery scenes, achieving an accuracy of 92\%. The segmentation pipeline enables functionalities to create visual questions and feedback desired by surgeons from a formative study. Surgment enables surgeons to 1) retrieve frames of interest through sketches, and 2) design exercises that target specific anatomical components and offer visual feedback. In an evaluation study with 11 surgeons, participants applauded the search-by-sketch approach for identifying frames of interest and found the resulting image-based questions and feedback to be of high educational value.
Abstract:In this paper, we explore the challenges inherent to Large Language Models (LLMs) like GPT-4, particularly their propensity for hallucinations, logic mistakes, and incorrect conclusions when tasked with answering complex questions. The capacity of LLMs to present erroneous answers in a coherent and semantically rigorous manner further complicates the detection of factual inaccuracies. This issue is especially pronounced in fields that require specialized expertise. Our work delves into these challenges, aiming to enhance the understanding and mitigation of such errors, thereby contributing to the improvement of LLM accuracy and reliability in scientific and other specialized domains. Our findings reveal a non-linear relationship between the context's relevancy and the answers' measured quality. In addition, we demonstrate that with the correct calibration, it is possible to automate the grading procedure -- a finding suggesting that, at least to some degree, the LLMs can be used to self-examine the quality of their own performance. Finally, we describe an experimental platform that can be seen as a proof-of-concept of the techniques described in this work.
Abstract:Recent diffusion-based subject driven generative methods have enabled image generations with good fidelity for specific objects or human portraits. However, to achieve better versatility for applications, we argue that not only improved datasets and evaluations are desired, but also more careful methods to retrieve only relevant information from conditional images are anticipated. To this end, we propose an anime figures dataset RetriBooru-V1, with enhanced identity and clothing labels. We state new tasks enabled by this dataset, and introduce a new diversity metric to measure success in completing these tasks, quantifying the flexibility of image generations. We establish an RAG-inspired baseline method, designed to retrieve precise conditional information from reference images. Then, we compare with current methods on existing task to demonstrate the capability of the proposed method. Finally, we provide baseline experiment results on new tasks, and conduct ablation studies on the possible structural choices.
Abstract:Despite the remarkable results that can be achieved by data-driven intelligent fault diagnosis techniques, they presuppose the same distribution of training and test data as well as sufficient labeled data. Various operating states often exist in practical scenarios, leading to the problem of domain shift that hinders the effectiveness of fault diagnosis. While recent unsupervised domain adaptation methods enable cross-domain fault diagnosis, they struggle to effectively utilize information from multiple source domains and achieve effective diagnosis faults in multiple target domains simultaneously. In this paper, we innovatively proposed a weighted joint maximum mean discrepancy enabled multi-source-multi-target unsupervised domain adaptation (WJMMD-MDA), which realizes domain adaptation under multi-source-multi-target scenarios in the field of fault diagnosis for the first time. The proposed method extracts sufficient information from multiple labeled source domains and achieves domain alignment between source and target domains through an improved weighted distance loss. As a result, domain-invariant and discriminative features between multiple source and target domains are learned with cross-domain fault diagnosis realized. The performance of the proposed method is evaluated in comprehensive comparative experiments on three datasets, and the experimental results demonstrate the superiority of this method.