Abstract:Magnetic monitoring of maritime environments is an important problem for monitoring and optimising shipping, as well as national security. New developments in compact, fibre-coupled quantum magnetometers have led to the opportunity to critically evaluate how best to create such a sensor network. Here we explore various magnetic sensor network architectures for target identification. Our modelling compares networks of scalar vs vector magnetometers. We implement an unscented Kalman filter approach to perform target tracking, and we find that vector networks provide a significant improvement in target tracking, specifically tracking accuracy and resilience compared with scalar networks.
Abstract:Generating medical reports from chest X-ray images is a critical and time-consuming task for radiologists, especially in emergencies. To alleviate the stress on radiologists and reduce the risk of misdiagnosis, numerous research efforts have been dedicated to automatic medical report generation in recent years. Most recent studies have developed methods that represent images by utilizing various medical metadata, such as the clinical document history of the current patient and the medical graphs constructed from retrieved reports of other similar patients. However, all existing methods integrate additional metadata representations with visual representations through a simple "Add and LayerNorm" operation, which suffers from the information asymmetry problem due to the distinct distributions between them. In addition, chest X-ray images are usually represented using pre-trained models based on natural domain images, which exhibit an obvious domain gap between general and medical domain images. To this end, we propose a novel approach called Enhanced Image Representations (EIR) for generating accurate chest X-ray reports. We utilize cross-modal transformers to fuse metadata representations with image representations, thereby effectively addressing the information asymmetry problem between them, and we leverage medical domain pre-trained models to encode medical images, effectively bridging the domain gap for image representation. Experimental results on the widely used MIMIC and Open-I datasets demonstrate the effectiveness of our proposed method.
Abstract:Zero-shot object navigation (ZSON) requires a robot to locate a target object in a previously unseen environment without relying on pre-built maps or task-specific training. However, existing ZSON methods often struggle in realistic and cluttered environments, particularly when the scene contains heavy occlusions, unknown risks, or dynamically moving target objects. To address these challenges, we propose \textbf{Schrödinger's Navigator}, a navigation framework inspired by Schrödinger's thought experiment on uncertainty. The framework treats unobserved space as a set of plausible future worlds and reasons over them before acting. Conditioned on egocentric visual inputs and three candidate trajectories, a trajectory-conditioned 3D world model imagines future observations along each path. This enables the agent to see beyond occlusions and anticipate risks in unseen regions without requiring extra detours or dense global mapping. The imagined 3D observations are fused into the navigation map and used to update a value map. These updates guide the policy toward trajectories that avoid occlusions, reduce exposure to uncertain space, and better track moving targets. Experiments on a Go2 quadruped robot across three challenging scenarios, including severe static occlusions, unknown risks, and dynamically moving targets, show that Schrödinger's Navigator consistently outperforms strong ZSON baselines in self-localization, object localization, and overall Success Rate in occlusion-heavy environments. These results demonstrate the effectiveness of trajectory-conditioned 3D imagination in enabling robust zero-shot object navigation.
Abstract:High-dimensional data often contain low-dimensional signals obscured by structured background noise, which limits the effectiveness of standard PCA. Motivated by contrastive learning, we address the problem of recovering shared signal subspaces from positive pairs, paired observations sharing the same signal but differing in background. Our baseline, PCA+, uses alignment-only contrastive learning and succeeds when background variation is mild, but fails under strong noise or high-dimensional regimes. To address this, we introduce PCA++, a hard uniformity-constrained contrastive PCA that enforces identity covariance on projected features. PCA++ has a closed-form solution via a generalized eigenproblem, remains stable in high dimensions, and provably regularizes against background interference. We provide exact high-dimensional asymptotics in both fixed-aspect-ratio and growing-spike regimes, showing uniformity's role in robust signal recovery. Empirically, PCA++ outperforms standard PCA and alignment-only PCA+ on simulations, corrupted-MNIST, and single-cell transcriptomics, reliably recovering condition-invariant structure. More broadly, we clarify uniformity's role in contrastive learning, showing that explicit feature dispersion defends against structured noise and enhances robustness.
Abstract:The success of autoregressive models largely depends on the effectiveness of vector quantization, a technique that discretizes continuous features by mapping them to the nearest code vectors within a learnable codebook. Two critical issues in existing vector quantization methods are training instability and codebook collapse. Training instability arises from the gradient discrepancy introduced by the straight-through estimator, especially in the presence of significant quantization errors, while codebook collapse occurs when only a small subset of code vectors are utilized during training. A closer examination of these issues reveals that they are primarily driven by a mismatch between the distributions of the features and code vectors, leading to unrepresentative code vectors and significant data information loss during compression. To address this, we employ the Wasserstein distance to align these two distributions, achieving near 100\% codebook utilization and significantly reducing the quantization error. Both empirical and theoretical analyses validate the effectiveness of the proposed approach.




Abstract:Both zero-shot and tuning-based customized text-to-image (CT2I) generation have made significant progress for storytelling content creation. In contrast, research on customized text-to-video (CT2V) generation remains relatively limited. Existing zero-shot CT2V methods suffer from poor generalization, while another line of work directly combining tuning-based T2I models with temporal motion modules often leads to the loss of structural and texture information. To bridge this gap, we propose an autoregressive structure and texture propagation module (STPM), which extracts key structural and texture features from the reference subject and injects them autoregressively into each video frame to enhance consistency. Additionally, we introduce a test-time reward optimization (TTRO) method to further refine fine-grained details. Quantitative and qualitative experiments validate the effectiveness of STPM and TTRO, demonstrating improvements of 7.8 and 13.1 in CLIP-I and DINO consistency metrics over the baseline, respectively.
Abstract:Acquiring structured data from domain-specific, image-based documents such as scanned reports is crucial for many downstream tasks but remains challenging due to document variability. Many of these documents exist as images rather than as machine-readable text, which requires human annotation to train automated extraction systems. We present DocSpiral, the first Human-in-the-Spiral assistive document annotation platform, designed to address the challenge of extracting structured information from domain-specific, image-based document collections. Our spiral design establishes an iterative cycle in which human annotations train models that progressively require less manual intervention. DocSpiral integrates document format normalization, comprehensive annotation interfaces, evaluation metrics dashboard, and API endpoints for the development of AI / ML models into a unified workflow. Experiments demonstrate that our framework reduces annotation time by at least 41\% while showing consistent performance gains across three iterations during model training. By making this annotation platform freely accessible, we aim to lower barriers to AI/ML models development in document processing, facilitating the adoption of large language models in image-based, document-intensive fields such as geoscience and healthcare. The system is freely available at: https://app.ai4wa.com. The demonstration video is available: https://app.ai4wa.com/docs/docspiral/demo.
Abstract:We present \textbf{SymbioticRAG}, a novel framework that fundamentally reimagines Retrieval-Augmented Generation~(RAG) systems by establishing a bidirectional learning relationship between humans and machines. Our approach addresses two critical challenges in current RAG systems: the inherently human-centered nature of relevance determination and users' progression from "unconscious incompetence" in query formulation. SymbioticRAG introduces a two-tier solution where Level 1 enables direct human curation of retrieved content through interactive source document exploration, while Level 2 aims to build personalized retrieval models based on captured user interactions. We implement Level 1 through three key components: (1)~a comprehensive document processing pipeline with specialized models for layout detection, OCR, and extraction of tables, formulas, and figures; (2)~an extensible retriever module supporting multiple retrieval strategies; and (3)~an interactive interface that facilitates both user engagement and interaction data logging. We experiment Level 2 implementation via a retriever strategy incorporated LLM summarized user intention from user interaction logs. To maintain high-quality data preparation, we develop a human-on-the-loop validation interface that improves pipeline output while advancing research in specialized extraction tasks. Evaluation across three scenarios (literature review, geological exploration, and education) demonstrates significant improvements in retrieval relevance and user satisfaction compared to traditional RAG approaches. To facilitate broader research and further advancement of SymbioticRAG Level 2 implementation, we will make our system openly accessible to the research community.




Abstract:We present a general computational framework for solving continuous-time financial market equilibria under minimal modeling assumptions while incorporating realistic financial frictions, such as trading costs, and supporting multiple interacting agents. Inspired by generative adversarial networks (GANs), our approach employs a novel generative deep reinforcement learning framework with a decoupling feedback system embedded in the adversarial training loop, which we term as the \emph{reinforcement link}. This architecture stabilizes the training dynamics by incorporating feedback from the discriminator. Our theoretically guided feedback mechanism enables the decoupling of the equilibrium system, overcoming challenges that hinder conventional numerical algorithms. Experimentally, our algorithm not only learns but also provides testable predictions on how asset returns and volatilities emerge from the endogenous trading behavior of market participants, where traditional analytical methods fall short. The design of our model is further supported by an approximation guarantee.




Abstract:Lifelong learning (LL) aims to continuously acquire new knowledge while retaining previously learned knowledge. A central challenge in LL is the stability-plasticity dilemma, which requires models to balance the preservation of previous knowledge (stability) with the ability to learn new tasks (plasticity). While parameter-efficient fine-tuning (PEFT) has been widely adopted in large language models, its application to lifelong learning remains underexplored. To bridge this gap, this paper proposes AdaLL, an adapter-based framework designed to address the dilemma through a simple, universal, and effective strategy. AdaLL co-trains the backbone network and adapters under regularization constraints, enabling the backbone to capture task-invariant features while allowing the adapters to specialize in task-specific information. Unlike methods that freeze the backbone network, AdaLL incrementally enhances the backbone's capabilities across tasks while minimizing interference through backbone regularization. This architectural design significantly improves both stability and plasticity, effectively eliminating the stability-plasticity dilemma. Extensive experiments demonstrate that AdaLL consistently outperforms existing methods across various configurations, including dataset choices, task sequences, and task scales.