Abstract:Single-agent LLMs hit hard limits--finite context, role overload, and brittle domain transfer. Conventional multi-agent fixes soften those edges yet expose fresh pains: ill-posed decompositions, fuzzy contracts, and verification overhead that blunts the gains. We therefore present Know-The-Ropes (KtR), a framework that converts domain priors into an algorithmic blueprint hierarchy, in which tasks are recursively split into typed, controller-mediated subtasks, each solved zero-shot or with the lightest viable boost (e.g., chain-of-thought, micro-tune, self-check). Grounded in the No-Free-Lunch theorem, KtR trades the chase for a universal prompt for disciplined decomposition. On the Knapsack problem (3-8 items), three GPT-4o-mini agents raise accuracy from 3% zero-shot to 95% on size-5 instances after patching a single bottleneck agent. On the tougher Task-Assignment problem (6-15 jobs), a six-agent o3-mini blueprint hits 100% up to size 10 and 84% on sizes 13-15, versus 11% zero-shot. Algorithm-aware decomposition plus targeted augmentation thus turns modest models into reliable collaborators--no ever-larger monoliths required.
Abstract:Large Language Models (LLMs) are increasingly equipped with capabilities of real-time web search and integrated with protocols like Model Context Protocol (MCP). This extension could introduce new security vulnerabilities. We present a systematic investigation of LLM vulnerabilities to hidden adversarial prompts through malicious font injection in external resources like webpages, where attackers manipulate code-to-glyph mapping to inject deceptive content which are invisible to users. We evaluate two critical attack scenarios: (1) "malicious content relay" and (2) "sensitive data leakage" through MCP-enabled tools. Our experiments reveal that indirect prompts with injected malicious font can bypass LLM safety mechanisms through external resources, achieving varying success rates based on data sensitivity and prompt design. Our research underscores the urgent need for enhanced security measures in LLM deployments when processing external content.
Abstract:Large Language Models (LLMs) have shown promise in clinical decision support, yet their application to triage remains underexplored. We systematically investigate the capabilities of LLMs in emergency department triage through two key dimensions: (1) robustness to distribution shifts and missing data, and (2) counterfactual analysis of intersectional biases across sex and race. We assess multiple LLM-based approaches, ranging from continued pre-training to in-context learning, as well as machine learning approaches. Our results indicate that LLMs exhibit superior robustness, and we investigate the key factors contributing to the promising LLM-based approaches. Furthermore, in this setting, we identify gaps in LLM preferences that emerge in particular intersections of sex and race. LLMs generally exhibit sex-based differences, but they are most pronounced in certain racial groups. These findings suggest that LLMs encode demographic preferences that may emerge in specific clinical contexts or particular combinations of characteristics.
Abstract:Investigating the public experience of urgent care facilities is essential for promoting community healthcare development. Traditional survey methods often fall short due to limited scope, time, and spatial coverage. Crowdsourcing through online reviews or social media offers a valuable approach to gaining such insights. With recent advancements in large language models (LLMs), extracting nuanced perceptions from reviews has become feasible. This study collects Google Maps reviews across the DMV and Florida areas and conducts prompt engineering with the GPT model to analyze the aspect-based sentiment of urgent care. We first analyze the geospatial patterns of various aspects, including interpersonal factors, operational efficiency, technical quality, finances, and facilities. Next, we determine Census Block Group(CBG)-level characteristics underpinning differences in public perception, including population density, median income, GINI Index, rent-to-income ratio, household below poverty rate, no insurance rate, and unemployment rate. Our results show that interpersonal factors and operational efficiency emerge as the strongest determinants of patient satisfaction in urgent care, while technical quality, finances, and facilities show no significant independent effects when adjusted for in multivariate models. Among socioeconomic and demographic factors, only population density demonstrates a significant but modest association with patient ratings, while the remaining factors exhibit no significant correlations. Overall, this study highlights the potential of crowdsourcing to uncover the key factors that matter to residents and provide valuable insights for stakeholders to improve public satisfaction with urgent care.
Abstract:This study explores a novel approach to enhance the performance of Large Language Models (LLMs) through the optimization of input data within prompts. While previous research has primarily focused on refining instruction components and augmenting input data with in-context examples, our work investigates the potential benefits of optimizing the input data itself. We introduce a two-pronged strategy for input data optimization: content engineering and structural reformulation. Content engineering involves imputing missing values, removing irrelevant attributes, and enriching profiles by generating additional information inferred from existing attributes. Subsequent to content engineering, structural reformulation is applied to optimize the presentation of the modified content to LLMs, given their sensitivity to input format. Our findings suggest that these optimizations can significantly improve the performance of LLMs in various tasks, offering a promising avenue for future research in prompt engineering. The source code is available at https://anonymous.4open.science/r/ADO-6BC5/
Abstract:On July 13, 2024, at the Trump rally in Pennsylvania, someone attempted to assassinate Republican Presidential Candidate Donald Trump. This attempt sparked a large-scale discussion on social media. We collected posts from X (formerly known as Twitter) one week before and after the assassination attempt and aimed to model the short-term effects of such a ``shock'' on public opinions and discussion topics. Specifically, our study addresses three key questions: first, we investigate how public sentiment toward Donald Trump shifts over time and across regions (RQ1) and examine whether the assassination attempt itself significantly affects public attitudes, independent of the existing political alignments (RQ2). Finally, we explore the major themes in online conversations before and after the crisis, illustrating how discussion topics evolved in response to this politically charged event (RQ3). By integrating large language model-based sentiment analysis, difference-in-differences modeling, and topic modeling techniques, we find that following the attempt the public response was broadly sympathetic to Trump rather than polarizing, despite baseline ideological and regional disparities.
Abstract:This paper investigates the rationality of large language models (LLMs) in strategic decision-making contexts, specifically within the framework of game theory. We evaluate several state-of-the-art LLMs across a spectrum of complete-information and incomplete-information games. Our findings reveal that LLMs frequently deviate from rational strategies, particularly as the complexity of the game increases with larger payoff matrices or deeper sequential trees. To address these limitations, we design multiple game-theoretic workflows that guide the reasoning and decision-making processes of LLMs. These workflows aim to enhance the models' ability to compute Nash Equilibria and make rational choices, even under conditions of uncertainty and incomplete information. Experimental results demonstrate that the adoption of these workflows significantly improves the rationality and robustness of LLMs in game-theoretic tasks. Specifically, with the workflow, LLMs exhibit marked improvements in identifying optimal strategies, achieving near-optimal allocations in negotiation scenarios, and reducing susceptibility to exploitation during negotiations. Furthermore, we explore the meta-strategic considerations of whether it is rational for agents to adopt such workflows, recognizing that the decision to use or forgo the workflow constitutes a game-theoretic issue in itself. Our research contributes to a deeper understanding of LLMs' decision-making capabilities in strategic contexts and provides insights into enhancing their rationality through structured workflows. The findings have implications for the development of more robust and strategically sound AI agents capable of navigating complex interactive environments. Code and data supporting this study are available at \url{https://github.com/Wenyueh/game_theory}.
Abstract:Simulated patient systems play a crucial role in modern medical education and research, providing safe, integrative learning environments and enabling clinical decision-making simulations. Large Language Models (LLM) could advance simulated patient systems by replicating medical conditions and patient-doctor interactions with high fidelity and low cost. However, ensuring the effectiveness and trustworthiness of these systems remains a challenge, as they require a large, diverse, and precise patient knowledgebase, along with a robust and stable knowledge diffusion to users. Here, we developed AIPatient, an advanced simulated patient system with AIPatient Knowledge Graph (AIPatient KG) as the input and the Reasoning Retrieval-Augmented Generation (Reasoning RAG) agentic workflow as the generation backbone. AIPatient KG samples data from Electronic Health Records (EHRs) in the Medical Information Mart for Intensive Care (MIMIC)-III database, producing a clinically diverse and relevant cohort of 1,495 patients with high knowledgebase validity (F1 0.89). Reasoning RAG leverages six LLM powered agents spanning tasks including retrieval, KG query generation, abstraction, checker, rewrite, and summarization. This agentic framework reaches an overall accuracy of 94.15% in EHR-based medical Question Answering (QA), outperforming benchmarks that use either no agent or only partial agent integration. Our system also presents high readability (median Flesch Reading Ease 77.23; median Flesch Kincaid Grade 5.6), robustness (ANOVA F-value 0.6126, p<0.1), and stability (ANOVA F-value 0.782, p<0.1). The promising performance of the AIPatient system highlights its potential to support a wide range of applications, including medical education, model evaluation, and system integration.
Abstract:Recent advancements in deep learning, particularly large language models (LLMs), made a significant impact on how researchers study microbiome and metagenomics data. Microbial protein and genomic sequences, like natural languages, form a language of life, enabling the adoption of LLMs to extract useful insights from complex microbial ecologies. In this paper, we review applications of deep learning and language models in analyzing microbiome and metagenomics data. We focus on problem formulations, necessary datasets, and the integration of language modeling techniques. We provide an extensive overview of protein/genomic language modeling and their contributions to microbiome studies. We also discuss applications such as novel viromics language modeling, biosynthetic gene cluster prediction, and knowledge integration for metagenomics studies.
Abstract:Background: Online toxicity, encompassing behaviors such as harassment, bullying, hate speech, and the dissemination of misinformation, has become a pressing social concern in the digital age. The 2022 Mpox outbreak, initially termed "Monkeypox" but subsequently renamed to mitigate associated stigmas and societal concerns, serves as a poignant backdrop to this issue. Objective: In this research, we undertake a comprehensive analysis of the toxic online discourse surrounding the 2022 Mpox outbreak. Our objective is to dissect its origins, characterize its nature and content, trace its dissemination patterns, and assess its broader societal implications, with the goal of providing insights that can inform strategies to mitigate such toxicity in future crises. Methods: We collected more than 1.6 million unique tweets and analyzed them from five dimensions, including context, extent, content, speaker, and intent. Utilizing BERT-based topic modeling and social network community clustering, we delineated the toxic dynamics on Twitter. Results: We identified five high-level topic categories in the toxic online discourse on Twitter, including disease (46.6%), health policy and healthcare (19.3%), homophobia (23.9%), politics (6.0%), and racism (4.1%). Through the toxicity diffusion networks of mentions, retweets, and the top users, we found that retweets of toxic content were widespread, while influential users rarely engaged with or countered this toxicity through retweets. Conclusions: By tracking topical dynamics, we can track the changing popularity of toxic content online, providing a better understanding of societal challenges. Network dynamics spotlight key social media influencers and their intents, indicating that addressing these central figures in toxic discourse can enhance crisis communication and inform policy-making.