Abstract:Graph recommendation systems have been widely studied due to their ability to effectively capture the complex interactions between users and items. However, these systems also exhibit certain vulnerabilities when faced with attacks. The prevailing shilling attack methods typically manipulate recommendation results by injecting a large number of fake nodes and edges. However, such attack strategies face two primary challenges: low stealth and high destructiveness. To address these challenges, this paper proposes a novel graph backdoor attack method that aims to enhance the exposure of target items to the target user in a covert manner, without affecting other unrelated nodes. Specifically, we design a single-node trigger generator, which can effectively expose multiple target items to the target user by inserting only one fake user node. Additionally, we introduce constraint conditions between the target nodes and irrelevant nodes to mitigate the impact of fake nodes on the recommendation system's performance. Experimental results show that the exposure of the target items reaches no less than 50% in 99% of the target users, while the impact on the recommendation system's performance is controlled within approximately 5%.
Abstract:Graph anomaly detection aims to identify unusual patterns in graph-based data, with wide applications in fields such as web security and financial fraud detection. Existing methods typically rely on contrastive learning, assuming that a lower similarity between a node and its local subgraph indicates abnormality. However, these approaches overlook a crucial limitation: the presence of interfering edges invalidates this assumption, since it introduces disruptive noise that compromises the contrastive learning process. Consequently, this limitation impairs the ability to effectively learn meaningful representations of normal patterns, leading to suboptimal detection performance. To address this issue, we propose a Clean-View Enhanced Graph Anomaly Detection framework (CVGAD), which includes a multi-scale anomaly awareness module to identify key sources of interference in the contrastive learning process. Moreover, to mitigate bias from the one-step edge removal process, we introduce a novel progressive purification module. This module incrementally refines the graph by iteratively identifying and removing interfering edges, thereby enhancing model performance. Extensive experiments on five benchmark datasets validate the effectiveness of our approach.
Abstract:Temporal interaction graphs (TIGs), defined by sequences of timestamped interaction events, have become ubiquitous in real-world applications due to their capability to model complex dynamic system behaviors. As a result, temporal interaction graph representation learning (TIGRL) has garnered significant attention in recent years. TIGRL aims to embed nodes in TIGs into low-dimensional representations that effectively preserve both structural and temporal information, thereby enhancing the performance of downstream tasks such as classification, prediction, and clustering within constantly evolving data environments. In this paper, we begin by introducing the foundational concepts of TIGs and emphasize the critical role of temporal dependencies. We then propose a comprehensive taxonomy of state-of-the-art TIGRL methods, systematically categorizing them based on the types of information utilized during the learning process to address the unique challenges inherent to TIGs. To facilitate further research and practical applications, we curate the source of datasets and benchmarks, providing valuable resources for empirical investigations. Finally, we examine key open challenges and explore promising research directions in TIGRL, laying the groundwork for future advancements that have the potential to shape the evolution of this field.
Abstract:Interactive Recommendation (IR) has gained significant attention recently for its capability to quickly capture dynamic interest and optimize both short and long term objectives. IR agents are typically implemented through Deep Reinforcement Learning (DRL), because DRL is inherently compatible with the dynamic nature of IR. However, DRL is currently not perfect for IR. Due to the large action space and sample inefficiency problem, training DRL recommender agents is challenging. The key point is that useful features cannot be extracted as high-quality representations for the recommender agent to optimize its policy. To tackle this problem, we propose Contrastive Representation for Interactive Recommendation (CRIR). CRIR efficiently extracts latent, high-level preference ranking features from explicit interaction, and leverages the features to enhance users' representation. Specifically, the CRIR provides representation through one representation network, and refines it through our proposed Preference Ranking Contrastive Learning (PRCL). The key insight of PRCL is that it can perform contrastive learning without relying on computations involving high-level representations or large potential action sets. Furthermore, we also propose a data exploiting mechanism and an agent training mechanism to better adapt CRIR to the DRL backbone. Extensive experiments have been carried out to show our method's superior improvement on the sample efficiency while training an DRL-based IR agent.
Abstract:Multimodal Sentiment Analysis (MSA) stands as a critical research frontier, seeking to comprehensively unravel human emotions by amalgamating text, audio, and visual data. Yet, discerning subtle emotional nuances within audio and video expressions poses a formidable challenge, particularly when emotional polarities across various segments appear similar. In this paper, our objective is to spotlight emotion-relevant attributes of audio and visual modalities to facilitate multimodal fusion in the context of nuanced emotional shifts in visual-audio scenarios. To this end, we introduce DEVA, a progressive fusion framework founded on textual sentiment descriptions aimed at accentuating emotional features of visual-audio content. DEVA employs an Emotional Description Generator (EDG) to transmute raw audio and visual data into textualized sentiment descriptions, thereby amplifying their emotional characteristics. These descriptions are then integrated with the source data to yield richer, enhanced features. Furthermore, DEVA incorporates the Text-guided Progressive Fusion Module (TPF), leveraging varying levels of text as a core modality guide. This module progressively fuses visual-audio minor modalities to alleviate disparities between text and visual-audio modalities. Experimental results on widely used sentiment analysis benchmark datasets, including MOSI, MOSEI, and CH-SIMS, underscore significant enhancements compared to state-of-the-art models. Moreover, fine-grained emotion experiments corroborate the robust sensitivity of DEVA to subtle emotional variations.
Abstract:Node classification on graphs is of great importance in many applications. Due to the limited labeling capability and evolution in real-world open scenarios, novel classes can emerge on unlabeled testing nodes. However, little attention has been paid to novel class discovery on graphs. Discovering novel classes is challenging as novel and known class nodes are correlated by edges, which makes their representations indistinguishable when applying message passing GNNs. Furthermore, the novel classes lack labeling information to guide the learning process. In this paper, we propose a novel method Open-world gRAph neuraL network (ORAL) to tackle these challenges. ORAL first detects correlations between classes through semi-supervised prototypical learning. Inter-class correlations are subsequently eliminated by the prototypical attention network, leading to distinctive representations for different classes. Furthermore, to fully explore multi-scale graph features for alleviating label deficiencies, ORAL generates pseudo-labels by aligning and ensembling label estimations from multiple stacked prototypical attention networks. Extensive experiments on several benchmark datasets show the effectiveness of our proposed method.
Abstract:Graph neural networks (GNNs) have found widespread application in modeling graph data across diverse domains. While GNNs excel in scenarios where the testing data shares the distribution of their training counterparts (in distribution, ID), they often exhibit incorrect predictions when confronted with samples from an unfamiliar distribution (out-of-distribution, OOD). To identify and reject OOD samples with GNNs, recent studies have explored graph OOD detection, often focusing on training a specific model or modifying the data on top of a well-trained GNN. Despite their effectiveness, these methods come with heavy training resources and costs, as they need to optimize the GNN-based models on training data. Moreover, their reliance on modifying the original GNNs and accessing training data further restricts their universality. To this end, this paper introduces a method to detect Graph Out-of-Distribution At Test-time (namely GOODAT), a data-centric, unsupervised, and plug-and-play solution that operates independently of training data and modifications of GNN architecture. With a lightweight graph masker, GOODAT can learn informative subgraphs from test samples, enabling the capture of distinct graph patterns between OOD and ID samples. To optimize the graph masker, we meticulously design three unsupervised objective functions based on the graph information bottleneck principle, motivating the masker to capture compact yet informative subgraphs for OOD detection. Comprehensive evaluations confirm that our GOODAT method outperforms state-of-the-art benchmarks across a variety of real-world datasets. The code is available at Github: https://github.com/Ee1s/GOODAT
Abstract:Graph Neural Networks (GNNs) have been a prevailing technique for tackling various analysis tasks on graph data. A key premise for the remarkable performance of GNNs relies on complete and trustworthy initial graph descriptions (i.e., node features and graph structure), which is often not satisfied since real-world graphs are often incomplete due to various unavoidable factors. In particular, GNNs face greater challenges when both node features and graph structure are incomplete at the same time. The existing methods either focus on feature completion or structure completion. They usually rely on the matching relationship between features and structure, or employ joint learning of node representation and feature (or structure) completion in the hope of achieving mutual benefit. However, recent studies confirm that the mutual interference between features and structure leads to the degradation of GNN performance. When both features and structure are incomplete, the mismatch between features and structure caused by the missing randomness exacerbates the interference between the two, which may trigger incorrect completions that negatively affect node representation. To this end, in this paper we propose a general GNN framework based on teacher-student distillation to improve the performance of GNNs on incomplete graphs, namely T2-GNN. To avoid the interference between features and structure, we separately design feature-level and structure-level teacher models to provide targeted guidance for student model (base GNNs, such as GCN) through distillation. Then we design two personalized methods to obtain well-trained feature and structure teachers. To ensure that the knowledge of the teacher model is comprehensively and effectively distilled to the student model, we further propose a dual distillation mode to enable the student to acquire as much expert knowledge as possible.
Abstract:Graph-Convolution-based methods have been successfully applied to representation learning on homophily graphs where nodes with the same label or similar attributes tend to connect with one another. Due to the homophily assumption of Graph Convolutional Networks (GCNs) that these methods use, they are not suitable for heterophily graphs where nodes with different labels or dissimilar attributes tend to be adjacent. Several methods have attempted to address this heterophily problem, but they do not change the fundamental aggregation mechanism of GCNs because they rely on summation operators to aggregate information from neighboring nodes, which is implicitly subject to the homophily assumption. Here, we introduce a novel aggregation mechanism and develop a RAndom Walk Aggregation-based Graph Neural Network (called RAW-GNN) method. The proposed approach integrates the random walk strategy with graph neural networks. The new method utilizes breadth-first random walk search to capture homophily information and depth-first search to collect heterophily information. It replaces the conventional neighborhoods with path-based neighborhoods and introduces a new path-based aggregator based on Recurrent Neural Networks. These designs make RAW-GNN suitable for both homophily and heterophily graphs. Extensive experimental results showed that the new method achieved state-of-the-art performance on a variety of homophily and heterophily graphs.
Abstract:Trust evaluation is critical for many applications such as cyber security, social communication and recommender systems. Users and trust relationships among them can be seen as a graph. Graph neural networks (GNNs) show their powerful ability for analyzing graph-structural data. Very recently, existing work attempted to introduce the attributes and asymmetry of edges into GNNs for trust evaluation, while failed to capture some essential properties (e.g., the propagative and composable nature) of trust graphs. In this work, we propose a new GNN based trust evaluation method named TrustGNN, which integrates smartly the propagative and composable nature of trust graphs into a GNN framework for better trust evaluation. Specifically, TrustGNN designs specific propagative patterns for different propagative processes of trust, and distinguishes the contribution of different propagative processes to create new trust. Thus, TrustGNN can learn comprehensive node embeddings and predict trust relationships based on these embeddings. Experiments on some widely-used real-world datasets indicate that TrustGNN significantly outperforms the state-of-the-art methods. We further perform analytical experiments to demonstrate the effectiveness of the key designs in TrustGNN.