Temporal Interaction Graphs (TIGs) are widely employed to model intricate real-world systems such as financial systems and social networks. To capture the dynamism and interdependencies of nodes, existing TIG embedding models need to process edges sequentially and chronologically. However, this requirement prevents it from being processed in parallel and struggle to accommodate burgeoning data volumes to GPU. Consequently, many large-scale temporal interaction graphs are confined to CPU processing. Furthermore, a generalized GPU scaling and acceleration approach remains unavailable. To facilitate large-scale TIGs' implementation on GPUs for acceleration, we introduce a novel training approach namely Streaming Edge Partitioning and Parallel Acceleration for Temporal Interaction Graph Embedding (SPEED). The SPEED is comprised of a Streaming Edge Partitioning Component (SEP) which addresses space overhead issue by assigning fewer nodes to each GPU, and a Parallel Acceleration Component (PAC) which enables simultaneous training of different sub-graphs, addressing time overhead issue. Our method can achieve a good balance in computing resources, computing time, and downstream task performance. Empirical validation across 7 real-world datasets demonstrates the potential to expedite training speeds by a factor of up to 19.29x. Simultaneously, resource consumption of a single-GPU can be diminished by up to 69%, thus enabling the multiple GPU-based training and acceleration encompassing millions of nodes and billions of edges. Furthermore, our approach also maintains its competitiveness in downstream tasks.
Temporal Graph Networks (TGNs) have shown remarkable performance in learning representation for continuous-time dynamic graphs. However, real-world dynamic graphs typically contain diverse and intricate noise. Noise can significantly degrade the quality of representation generation, impeding the effectiveness of TGNs in downstream tasks. Though structure learning is widely applied to mitigate noise in static graphs, its adaptation to dynamic graph settings poses two significant challenges. i) Noise dynamics. Existing structure learning methods are ill-equipped to address the temporal aspect of noise, hampering their effectiveness in such dynamic and ever-changing noise patterns. ii) More severe noise. Noise may be introduced along with multiple interactions between two nodes, leading to the re-pollution of these nodes and consequently causing more severe noise compared to static graphs. In this paper, we present RDGSL, a representation learning method in continuous-time dynamic graphs. Meanwhile, we propose dynamic graph structure learning, a novel supervisory signal that empowers RDGSL with the ability to effectively combat noise in dynamic graphs. To address the noise dynamics issue, we introduce the Dynamic Graph Filter, where we innovatively propose a dynamic noise function that dynamically captures both current and historical noise, enabling us to assess the temporal aspect of noise and generate a denoised graph. We further propose the Temporal Embedding Learner to tackle the challenge of more severe noise, which utilizes an attention mechanism to selectively turn a blind eye to noisy edges and hence focus on normal edges, enhancing the expressiveness for representation generation that remains resilient to noise. Our method demonstrates robustness towards downstream tasks, resulting in up to 5.1% absolute AUC improvement in evolving classification versus the second-best baseline.
Continuous-time dynamic graph modeling is a crucial task for many real-world applications, such as financial risk management and fraud detection. Though existing dynamic graph modeling methods have achieved satisfactory results, they still suffer from three key limitations, hindering their scalability and further applicability. i) Indiscriminate updating. For incoming edges, existing methods would indiscriminately deal with them, which may lead to more time consumption and unexpected noisy information. ii) Ineffective node-wise long-term modeling. They heavily rely on recurrent neural networks (RNNs) as a backbone, which has been demonstrated to be incapable of fully capturing node-wise long-term dependencies in event sequences. iii) Neglect of re-occurrence patterns. Dynamic graphs involve the repeated occurrence of neighbors that indicates their importance, which is disappointedly neglected by existing methods. In this paper, we present iLoRE, a novel dynamic graph modeling method with instant node-wise Long-term modeling and Re-occurrence preservation. To overcome the indiscriminate updating issue, we introduce the Adaptive Short-term Updater module that will automatically discard the useless or noisy edges, ensuring iLoRE's effectiveness and instant ability. We further propose the Long-term Updater to realize more effective node-wise long-term modeling, where we innovatively propose the Identity Attention mechanism to empower a Transformer-based updater, bypassing the limited effectiveness of typical RNN-dominated designs. Finally, the crucial re-occurrence patterns are also encoded into a graph module for informative representation learning, which will further improve the expressiveness of our method. Our experimental results on real-world datasets demonstrate the effectiveness of our iLoRE for dynamic graph modeling.
Online groups have become increasingly prevalent, providing users with space to share experiences and explore interests. Therefore, user-centric group discovery task, i.e., recommending groups to users can help both users' online experiences and platforms' long-term developments. Existing recommender methods can not deal with this task as modeling user-group participation into a bipartite graph overlooks their item-side interests. Although there exist a few works attempting to address this task, they still fall short in fully preserving the social context and ensuring effective interest representation learning. In this paper, we focus on exploring the intents that motivate users to participate in groups, which can be categorized into different types, like the social-intent and the personal interest-intent. The former refers to users joining a group affected by their social links, while the latter relates to users joining groups with like-minded people for self-enjoyment. To comprehend different intents, we propose a novel model, DiRec, that first models each intent separately and then fuses them together for predictions. Specifically, for social-intent, we introduce the hypergraph structure to model the relationship between groups and members, leading to a richer understanding of the social context. As for interest-intent, we employ novel structural refinement on the interactive graph to uncover more intricate user behaviors and group interests, realizing better representation learning of interests. Furthermore, we also observe the intent overlapping in real-world scenarios and devise a novel self-supervised learning loss that encourages such alignment for final recommendations. Extensive experiments on three public datasets show the significant improvement of DiRec over the state-of-the-art methods.
Large language models (LLMs) have demonstrated their significant potential to be applied for addressing various application tasks. However, traditional recommender systems continue to face great challenges such as poor interactivity and explainability, which actually also hinder their broad deployment in real-world systems. To address these limitations, this paper proposes a novel paradigm called Chat-Rec (ChatGPT Augmented Recommender System) that innovatively augments LLMs for building conversational recommender systems by converting user profiles and historical interactions into prompts. Chat-Rec is demonstrated to be effective in learning user preferences and establishing connections between users and products through in-context learning, which also makes the recommendation process more interactive and explainable. What's more, within the Chat-Rec framework, user's preferences can transfer to different products for cross-domain recommendations, and prompt-based injection of information into LLMs can also handle the cold-start scenarios with new items. In our experiments, Chat-Rec effectively improve the results of top-k recommendations and performs better in zero-shot rating prediction task. Chat-Rec offers a novel approach to improving recommender systems and presents new practical scenarios for the implementation of AIGC (AI generated content) in recommender system studies.
Temporal interaction graphs (TIGs), consisting of sequences of timestamped interaction events, are prevalent in fields like e-commerce and social networks. To better learn dynamic node embeddings that vary over time, researchers have proposed a series of temporal graph neural networks for TIGs. However, due to the entangled temporal and structural dependencies, existing methods have to process the sequence of events chronologically and consecutively to ensure node representations are up-to-date. This prevents existing models from parallelization and reduces their flexibility in industrial applications. To tackle the above challenge, in this paper, we propose TIGER, a TIG embedding model that can restart at any timestamp. We introduce a restarter module that generates surrogate representations acting as the warm initialization of node representations. By restarting from multiple timestamps simultaneously, we divide the sequence into multiple chunks and naturally enable the parallelization of the model. Moreover, in contrast to previous models that utilize a single memory unit, we introduce a dual memory module to better exploit neighborhood information and alleviate the staleness problem. Extensive experiments on four public datasets and one industrial dataset are conducted, and the results verify both the effectiveness and the efficiency of our work.
Since group activities have become very common in daily life, there is an urgent demand for generating recommendations for a group of users, referred to as group recommendation task. Existing group recommendation methods usually infer groups' preferences via aggregating diverse members' interests. Actually, groups' ultimate choice involves compromises between members, and finally, an agreement can be reached. However, existing individual information aggregation lacks a holistic group-level consideration, failing to capture the consensus information. Besides, their specific aggregation strategies either suffer from high computational costs or become too coarse-grained to make precise predictions. To solve the aforementioned limitations, in this paper, we focus on exploring consensus behind group behavior data. To comprehensively capture the group consensus, we innovatively design three distinct views which provide mutually complementary information to enable multi-view learning, including member-level aggregation, item-level tastes, and group-level inherent preferences. To integrate and balance the multi-view information, an adaptive fusion component is further proposed. As to member-level aggregation, different from existing linear or attentive strategies, we design a novel hypergraph neural network that allows for efficient hypergraph convolutional operations to generate expressive member-level aggregation. We evaluate our ConsRec on two real-world datasets and experimental results show that our model outperforms state-of-the-art methods. An extensive case study also verifies the effectiveness of consensus modeling.