Abstract:Plant phenotyping plays a pivotal role in understanding plant traits and their interactions with the environment, making it crucial for advancing precision agriculture and crop improvement. 3D reconstruction technologies have emerged as powerful tools for capturing detailed plant morphology and structure, offering significant potential for accurate and automated phenotyping. This paper provides a comprehensive review of the 3D reconstruction techniques for plant phenotyping, covering classical reconstruction methods, emerging Neural Radiance Fields (NeRF), and the novel 3D Gaussian Splatting (3DGS) approach. Classical methods, which often rely on high-resolution sensors, are widely adopted due to their simplicity and flexibility in representing plant structures. However, they face challenges such as data density, noise, and scalability. NeRF, a recent advancement, enables high-quality, photorealistic 3D reconstructions from sparse viewpoints, but its computational cost and applicability in outdoor environments remain areas of active research. The emerging 3DGS technique introduces a new paradigm in reconstructing plant structures by representing geometry through Gaussian primitives, offering potential benefits in both efficiency and scalability. We review the methodologies, applications, and performance of these approaches in plant phenotyping and discuss their respective strengths, limitations, and future prospects (https://github.com/JiajiaLi04/3D-Reconstruction-Plants). Through this review, we aim to provide insights into how these diverse 3D reconstruction techniques can be effectively leveraged for automated and high-throughput plant phenotyping, contributing to the next generation of agricultural technology.
Abstract:With the rise of powerful foundation models, a pre-training-fine-tuning paradigm becomes increasingly popular these days: A foundation model is pre-trained using a huge amount of data from various sources, and then the downstream users only need to fine-tune and adapt it to specific downstream tasks. However, due to the high computation complexity of adversarial training, it is not feasible to fine-tune the foundation model to improve its robustness on the downstream task. Observing the above challenge, we want to improve the downstream robustness without updating/accessing the weights in the foundation model. Inspired from existing literature in robustness inheritance (Kim et al., 2020), through theoretical investigation, we identify a close relationship between robust contrastive learning with the adversarial robustness of supervised learning. To further validate and utilize this theoretical insight, we design a simple-yet-effective robust auto-encoder as a data pre-processing method before feeding the data into the foundation model. The proposed approach has zero access to the foundation model when training the robust auto-encoder. Extensive experiments demonstrate the effectiveness of the proposed method in improving the robustness of downstream tasks, verifying the connection between the feature robustness (implied by small adversarial contrastive loss) and the robustness of the downstream task.