Abstract:Existing audio language models typically rely on task-specific fine-tuning to accomplish particular audio tasks. In contrast, humans are able to generalize to new audio tasks with only a few examples or simple instructions. GPT-3 has shown that scaling next-token prediction pretraining enables strong generalization capabilities in text, and we believe this paradigm is equally applicable to the audio domain. By scaling MiMo-Audio's pretraining data to over one hundred million of hours, we observe the emergence of few-shot learning capabilities across a diverse set of audio tasks. We develop a systematic evaluation of these capabilities and find that MiMo-Audio-7B-Base achieves SOTA performance on both speech intelligence and audio understanding benchmarks among open-source models. Beyond standard metrics, MiMo-Audio-7B-Base generalizes to tasks absent from its training data, such as voice conversion, style transfer, and speech editing. MiMo-Audio-7B-Base also demonstrates powerful speech continuation capabilities, capable of generating highly realistic talk shows, recitations, livestreaming and debates. At the post-training stage, we curate a diverse instruction-tuning corpus and introduce thinking mechanisms into both audio understanding and generation. MiMo-Audio-7B-Instruct achieves open-source SOTA on audio understanding benchmarks (MMSU, MMAU, MMAR, MMAU-Pro), spoken dialogue benchmarks (Big Bench Audio, MultiChallenge Audio) and instruct-TTS evaluations, approaching or surpassing closed-source models. Model checkpoints and full evaluation suite are available at https://github.com/XiaomiMiMo/MiMo-Audio.




Abstract:Embodied world models aim to predict and interact with the physical world through visual observations and actions. However, existing models struggle to accurately translate low-level actions (e.g., joint positions) into precise robotic movements in predicted frames, leading to inconsistencies with real-world physical interactions. To address these limitations, we propose MTV-World, an embodied world model that introduces Multi-view Trajectory-Video control for precise visuomotor prediction. Specifically, instead of directly using low-level actions for control, we employ trajectory videos obtained through camera intrinsic and extrinsic parameters and Cartesian-space transformation as control signals. However, projecting 3D raw actions onto 2D images inevitably causes a loss of spatial information, making a single view insufficient for accurate interaction modeling. To overcome this, we introduce a multi-view framework that compensates for spatial information loss and ensures high-consistency with physical world. MTV-World forecasts future frames based on multi-view trajectory videos as input and conditioning on an initial frame per view. Furthermore, to systematically evaluate both robotic motion precision and object interaction accuracy, we develop an auto-evaluation pipeline leveraging multimodal large models and referring video object segmentation models. To measure spatial consistency, we formulate it as an object location matching problem and adopt the Jaccard Index as the evaluation metric. Extensive experiments demonstrate that MTV-World achieves precise control execution and accurate physical interaction modeling in complex dual-arm scenarios.




Abstract:In this paper, we review legal testing methods based on Large Language Models (LLMs), using the OPENAI o1 model as a case study to evaluate the performance of large models in applying legal provisions. We compare current state-of-the-art LLMs, including open-source, closed-source, and legal-specific models trained specifically for the legal domain. Systematic tests are conducted on English and Chinese legal cases, and the results are analyzed in depth. Through systematic testing of legal cases from common law systems and China, this paper explores the strengths and weaknesses of LLMs in understanding and applying legal texts, reasoning through legal issues, and predicting judgments. The experimental results highlight both the potential and limitations of LLMs in legal applications, particularly in terms of challenges related to the interpretation of legal language and the accuracy of legal reasoning. Finally, the paper provides a comprehensive analysis of the advantages and disadvantages of various types of models, offering valuable insights and references for the future application of AI in the legal field.




Abstract:This paper introduces an innovative approach to Medical Vision-Language Pre-training (Med-VLP) area in the specialized context of radiograph representation learning. While conventional methods frequently merge textual annotations into unified reports, we acknowledge the intrinsic hierarchical relationship between the findings and impression section in radiograph datasets. To establish a targeted correspondence between images and texts, we propose a novel HybridMED framework to align global-level visual representations with impression and token-level visual representations with findings. Moreover, our framework incorporates a generation decoder that employs two proxy tasks, responsible for generating the impression from (1) images, via a captioning branch, and (2) findings, through a summarization branch. Additionally, knowledge distillation is leveraged to facilitate the training process. Experiments on the MIMIC-CXR dataset reveal that our summarization branch effectively distills knowledge to the captioning branch, enhancing model performance without significantly increasing parameter requirements due to the shared self-attention and feed-forward architecture.

Abstract:In an era defined by the explosive growth of data and rapid technological advancements, Multimodal Large Language Models (MLLMs) stand at the forefront of artificial intelligence (AI) systems. Designed to seamlessly integrate diverse data types-including text, images, videos, audio, and physiological sequences-MLLMs address the complexities of real-world applications far beyond the capabilities of single-modality systems. In this paper, we systematically sort out the applications of MLLM in multimodal tasks such as natural language, vision, and audio. We also provide a comparative analysis of the focus of different MLLMs in the tasks, and provide insights into the shortcomings of current MLLMs, and suggest potential directions for future research. Through these discussions, this paper hopes to provide valuable insights for the further development and application of MLLM.




Abstract:In multi-modal frameworks, the alignment of cross-modal features presents a significant challenge. The predominant approach in multi-modal pre-training emphasizes either global or local alignment between modalities, utilizing extensive datasets. This bottom-up driven method often suffers from a lack of interpretability, a critical concern in radiology. Previous studies have integrated high-level labels in medical images or text, but these still rely on manual annotation, a costly and labor-intensive process. Our work introduces a novel approach by using eye-gaze data, collected synchronously by radiologists during diagnostic evaluations. This data, indicating radiologists' focus areas, naturally links chest X-rays to diagnostic texts. We propose the Eye-gaze Guided Multi-modal Alignment (EGMA) framework to harness eye-gaze data for better alignment of image and text features, aiming to reduce reliance on manual annotations and thus cut training costs. Our model demonstrates robust performance, outperforming other state-of-the-art methods in zero-shot classification and retrieval tasks. The incorporation of easily-obtained eye-gaze data during routine radiological diagnoses signifies a step towards minimizing manual annotation dependency. Additionally, we explore the impact of varying amounts of eye-gaze data on model performance, highlighting the feasibility and utility of integrating this auxiliary data into multi-modal pre-training.
Abstract:Large language models (LLMs) have undergone significant expansion and have been increasingly integrated across various domains. Notably, in the realm of robot task planning, LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions. However, for embodied tasks, where robots interact with complex environments, text-only LLMs often face challenges due to a lack of compatibility with robotic visual perception. This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks. Additionally, we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions. Our results, based on diverse datasets, indicate that GPT-4V effectively enhances robot performance in embodied tasks. This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights toward bridging the gap in Human-Robot-Environment interaction.




Abstract:Privacy policies serve as the primary conduit through which online service providers inform users about their data collection and usage procedures. However, in a bid to be comprehensive and mitigate legal risks, these policy documents are often quite verbose. In practical use, users tend to click the Agree button directly rather than reading them carefully. This practice exposes users to risks of privacy leakage and legal issues. Recently, the advent of Large Language Models (LLM) such as ChatGPT and GPT-4 has opened new possibilities for text analysis, especially for lengthy documents like privacy policies. In this study, we investigate a privacy policy text analysis framework PolicyGPT based on the LLM. This framework was tested using two datasets. The first dataset comprises of privacy policies from 115 websites, which were meticulously annotated by legal experts, categorizing each segment into one of 10 classes. The second dataset consists of privacy policies from 304 popular mobile applications, with each sentence manually annotated and classified into one of another 10 categories. Under zero-shot learning conditions, PolicyGPT demonstrated robust performance. For the first dataset, it achieved an accuracy rate of 97%, while for the second dataset, it attained an 87% accuracy rate, surpassing that of the baseline machine learning and neural network models.
Abstract:Over decades, neuroscience has accumulated a wealth of research results in the text modality that can be used to explore cognitive processes. Meta-analysis is a typical method that successfully establishes a link from text queries to brain activation maps using these research results, but it still relies on an ideal query environment. In practical applications, text queries used for meta-analyses may encounter issues such as semantic redundancy and ambiguity, resulting in an inaccurate mapping to brain images. On the other hand, large language models (LLMs) like ChatGPT have shown great potential in tasks such as context understanding and reasoning, displaying a high degree of consistency with human natural language. Hence, LLMs could improve the connection between text modality and neuroscience, resolving existing challenges of meta-analyses. In this study, we propose a method called Chat2Brain that combines LLMs to basic text-2-image model, known as Text2Brain, to map open-ended semantic queries to brain activation maps in data-scarce and complex query environments. By utilizing the understanding and reasoning capabilities of LLMs, the performance of the mapping model is optimized by transferring text queries to semantic queries. We demonstrate that Chat2Brain can synthesize anatomically plausible neural activation patterns for more complex tasks of text queries.
Abstract:This paper introduces Radiology-Llama2, a large language model specialized for radiology through a process known as instruction tuning. Radiology-Llama2 is based on the Llama2 architecture and further trained on a large dataset of radiology reports to generate coherent and clinically useful impressions from radiological findings. Quantitative evaluations using ROUGE metrics on the MIMIC-CXR and OpenI datasets demonstrate that Radiology-Llama2 achieves state-of-the-art performance compared to other generative language models, with a Rouge-1 score of 0.4834 on MIMIC-CXR and 0.4185 on OpenI. Additional assessments by radiology experts highlight the model's strengths in understandability, coherence, relevance, conciseness, and clinical utility. The work illustrates the potential of localized language models designed and tuned for specialized domains like radiology. When properly evaluated and deployed, such models can transform fields like radiology by automating rote tasks and enhancing human expertise.