Alert button
Picture for Caiming Xiong

Caiming Xiong

Alert button

Embrace Divergence for Richer Insights: A Multi-document Summarization Benchmark and a Case Study on Summarizing Diverse Information from News Articles

Sep 17, 2023
Kung-Hsiang Huang, Philippe Laban, Alexander R. Fabbri, Prafulla Kumar Choubey, Shafiq Joty, Caiming Xiong, Chien-Sheng Wu

Previous research in multi-document news summarization has typically concentrated on collating information that all sources agree upon. However, to our knowledge, the summarization of diverse information dispersed across multiple articles about an event has not been previously investigated. The latter imposes a different set of challenges for a summarization model. In this paper, we propose a new task of summarizing diverse information encountered in multiple news articles encompassing the same event. To facilitate this task, we outlined a data collection schema for identifying diverse information and curated a dataset named DiverseSumm. The dataset includes 245 news stories, with each story comprising 10 news articles and paired with a human-validated reference. Moreover, we conducted a comprehensive analysis to pinpoint the position and verbosity biases when utilizing Large Language Model (LLM)-based metrics for evaluating the coverage and faithfulness of the summaries, as well as their correlation with human assessments. We applied our findings to study how LLMs summarize multiple news articles by analyzing which type of diverse information LLMs are capable of identifying. Our analyses suggest that despite the extraordinary capabilities of LLMs in single-document summarization, the proposed task remains a complex challenge for them mainly due to their limited coverage, with GPT-4 only able to cover less than 40% of the diverse information on average.

Viaarxiv icon

XGen-7B Technical Report

Sep 07, 2023
Erik Nijkamp, Tian Xie, Hiroaki Hayashi, Bo Pang, Congying Xia, Chen Xing, Jesse Vig, Semih Yavuz, Philippe Laban, Ben Krause, Senthil Purushwalkam, Tong Niu, Wojciech Kryściński, Lidiya Murakhovs'ka, Prafulla Kumar Choubey, Alex Fabbri, Ye Liu, Rui Meng, Lifu Tu, Meghana Bhat, Chien-Sheng Wu, Silvio Savarese, Yingbo Zhou, Shafiq Joty, Caiming Xiong

Figure 1 for XGen-7B Technical Report
Figure 2 for XGen-7B Technical Report
Figure 3 for XGen-7B Technical Report
Figure 4 for XGen-7B Technical Report

Large Language Models (LLMs) have become ubiquitous across various domains, transforming the way we interact with information and conduct research. However, most high-performing LLMs remain confined behind proprietary walls, hindering scientific progress. Most open-source LLMs, on the other hand, are limited in their ability to support longer sequence lengths, which is a key requirement for many tasks that require inference over an input context. To address this, we have trained XGen, a series of 7B parameter models on up to 8K sequence length for up to 1.5T tokens. We have also finetuned the XGen models on public-domain instructional data, creating their instruction-tuned counterparts (XGen-Inst). We open-source our models for both research advancements and commercial applications. Our evaluation on standard benchmarks shows that XGen models achieve comparable or better results when compared with state-of-the-art open-source LLMs. Our targeted evaluation on long sequence modeling tasks shows the benefits of our 8K-sequence models over 2K-sequence open-source LLMs.

Viaarxiv icon

Exploring the Integration Strategies of Retriever and Large Language Models

Aug 24, 2023
Ye Liu, Semih Yavuz, Rui Meng, Meghana Moorthy, Shafiq Joty, Caiming Xiong, Yingbo Zhou

Figure 1 for Exploring the Integration Strategies of Retriever and Large Language Models
Figure 2 for Exploring the Integration Strategies of Retriever and Large Language Models
Figure 3 for Exploring the Integration Strategies of Retriever and Large Language Models
Figure 4 for Exploring the Integration Strategies of Retriever and Large Language Models

The integration of retrieved passages and large language models (LLMs), such as ChatGPTs, has significantly contributed to improving open-domain question answering. However, there is still a lack of exploration regarding the optimal approach for incorporating retrieved passages into the answer generation process. This paper aims to fill this gap by investigating different methods of combining retrieved passages with LLMs to enhance answer generation. We begin by examining the limitations of a commonly-used concatenation approach. Surprisingly, this approach often results in generating "unknown" outputs, even when the correct document is among the top-k retrieved passages. To address this issue, we explore four alternative strategies for integrating the retrieved passages with the LLMs. These strategies include two single-round methods that utilize chain-of-thought reasoning and two multi-round strategies that incorporate feedback loops. Through comprehensive analyses and experiments, we provide insightful observations on how to effectively leverage retrieved passages to enhance the answer generation capability of LLMs.

Viaarxiv icon

Enhancing Performance on Seen and Unseen Dialogue Scenarios using Retrieval-Augmented End-to-End Task-Oriented System

Aug 16, 2023
Jianguo Zhang, Stephen Roller, Kun Qian, Zhiwei Liu, Rui Meng, Shelby Heinecke, Huan Wang, Silvio Savarese, Caiming Xiong

End-to-end task-oriented dialogue (TOD) systems have achieved promising performance by leveraging sophisticated natural language understanding and natural language generation capabilities of pre-trained models. This work enables the TOD systems with more flexibility through a simple cache. The cache provides the flexibility to dynamically update the TOD systems and handle both existing and unseen dialogue scenarios. Towards this end, we first fine-tune a retrieval module to effectively retrieve the most relevant information entries from the cache. We then train end-to-end TOD models that can refer to and ground on both dialogue history and retrieved information during TOD generation. The cache is straightforward to construct, and the backbone models of TOD systems are compatible with existing pre-trained generative models. Extensive experiments demonstrate the superior performance of our framework, with a notable improvement in non-empty joint goal accuracy by 6.7% compared to strong baselines.

* Accepted by SIGDIAL 2023 as a long paper 
Viaarxiv icon

BOLAA: Benchmarking and Orchestrating LLM-augmented Autonomous Agents

Aug 11, 2023
Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng, Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, Ran Xu, Phil Mui, Huan Wang, Caiming Xiong, Silvio Savarese

Figure 1 for BOLAA: Benchmarking and Orchestrating LLM-augmented Autonomous Agents
Figure 2 for BOLAA: Benchmarking and Orchestrating LLM-augmented Autonomous Agents
Figure 3 for BOLAA: Benchmarking and Orchestrating LLM-augmented Autonomous Agents
Figure 4 for BOLAA: Benchmarking and Orchestrating LLM-augmented Autonomous Agents

The massive successes of large language models (LLMs) encourage the emerging exploration of LLM-augmented Autonomous Agents (LAAs). An LAA is able to generate actions with its core LLM and interact with environments, which facilitates the ability to resolve complex tasks by conditioning on past interactions such as observations and actions. Since the investigation of LAA is still very recent, limited explorations are available. Therefore, we provide a comprehensive comparison of LAA in terms of both agent architectures and LLM backbones. Additionally, we propose a new strategy to orchestrate multiple LAAs such that each labor LAA focuses on one type of action, \textit{i.e.} BOLAA, where a controller manages the communication among multiple agents. We conduct simulations on both decision-making and multi-step reasoning environments, which comprehensively justify the capacity of LAAs. Our performance results provide quantitative suggestions for designing LAA architectures and the optimal choice of LLMs, as well as the compatibility of both. We release our implementation code of LAAs to the public at \url{https://github.com/salesforce/BOLAA}.

* Preprint 
Viaarxiv icon

Retroformer: Retrospective Large Language Agents with Policy Gradient Optimization

Aug 04, 2023
Weiran Yao, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Yihao Feng, Le Xue, Rithesh Murthy, Zeyuan Chen, Jianguo Zhang, Devansh Arpit, Ran Xu, Phil Mui, Huan Wang, Caiming Xiong, Silvio Savarese

Figure 1 for Retroformer: Retrospective Large Language Agents with Policy Gradient Optimization
Figure 2 for Retroformer: Retrospective Large Language Agents with Policy Gradient Optimization
Figure 3 for Retroformer: Retrospective Large Language Agents with Policy Gradient Optimization
Figure 4 for Retroformer: Retrospective Large Language Agents with Policy Gradient Optimization

Recent months have seen the emergence of a powerful new trend in which large language models (LLMs) are augmented to become autonomous language agents capable of performing objective oriented multi-step tasks on their own, rather than merely responding to queries from human users. Most existing language agents, however, are not optimized using environment-specific rewards. Although some agents enable iterative refinement through verbal feedback, they do not reason and plan in ways that are compatible with gradient-based learning from rewards. This paper introduces a principled framework for reinforcing large language agents by learning a retrospective model, which automatically tunes the language agent prompts from environment feedback through policy gradient. Specifically, our proposed agent architecture learns from rewards across multiple environments and tasks, for fine-tuning a pre-trained language model which refines the language agent prompt by summarizing the root cause of prior failed attempts and proposing action plans. Experimental results on various tasks demonstrate that the language agents improve over time and that our approach considerably outperforms baselines that do not properly leverage gradients from the environment. This demonstrates that using policy gradient optimization to improve language agents, for which we believe our work is one of the first, seems promising and can be applied to optimize other models in the agent architecture to enhance agent performances over time.

Viaarxiv icon

DialogStudio: Towards Richest and Most Diverse Unified Dataset Collection for Conversational AI

Jul 20, 2023
Jianguo Zhang, Kun Qian, Zhiwei Liu, Shelby Heinecke, Rui Meng, Ye Liu, Zhou Yu, Huan Wang, Silvio Savarese, Caiming Xiong

Figure 1 for DialogStudio: Towards Richest and Most Diverse Unified Dataset Collection for Conversational AI
Figure 2 for DialogStudio: Towards Richest and Most Diverse Unified Dataset Collection for Conversational AI
Figure 3 for DialogStudio: Towards Richest and Most Diverse Unified Dataset Collection for Conversational AI
Figure 4 for DialogStudio: Towards Richest and Most Diverse Unified Dataset Collection for Conversational AI

Despite advancements in conversational AI, language models encounter challenges to handle diverse conversational tasks, and existing dialogue dataset collections often lack diversity and comprehensiveness. To tackle these issues, we introduce DialogStudio: the largest and most diverse collection of dialogue datasets, unified under a consistent format while preserving their original information. Our collection encompasses data from open-domain dialogues, task-oriented dialogues, natural language understanding, conversational recommendation, dialogue summarization, and knowledge-grounded dialogues, making it an incredibly rich and diverse resource for dialogue research and model training. To further enhance the utility of DialogStudio, we identify the licenses for each dataset and design domain-aware prompts for selected dialogues to facilitate instruction-aware fine-tuning. Furthermore, we develop conversational AI models using the dataset collection, and our experiments in both zero-shot and few-shot learning scenarios demonstrate the superiority of DialogStudio. To improve transparency and support dataset and task-based research, as well as language model pre-training, all datasets, licenses, codes, and models associated with DialogStudio are made publicly accessible at https://github.com/salesforce/DialogStudio

Viaarxiv icon

REX: Rapid Exploration and eXploitation for AI Agents

Jul 18, 2023
Rithesh Murthy, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Le Xue, Weiran Yao, Yihao Feng, Zeyuan Chen, Akash Gokul, Devansh Arpit, Ran Xu, Phil Mui, Huan Wang, Caiming Xiong, Silvio Savarese

Figure 1 for REX: Rapid Exploration and eXploitation for AI Agents
Figure 2 for REX: Rapid Exploration and eXploitation for AI Agents
Figure 3 for REX: Rapid Exploration and eXploitation for AI Agents
Figure 4 for REX: Rapid Exploration and eXploitation for AI Agents

In this paper, we propose an enhanced approach for Rapid Exploration and eXploitation for AI Agents called REX. Existing AutoGPT-style techniques have inherent limitations, such as a heavy reliance on precise descriptions for decision-making, and the lack of a systematic approach to leverage try-and-fail procedures akin to traditional Reinforcement Learning (RL). REX introduces an additional layer of rewards and integrates concepts similar to Upper Confidence Bound (UCB) scores, leading to more robust and efficient AI agent performance. This approach has the advantage of enabling the utilization of offline behaviors from logs and allowing seamless integration with existing foundation models while it does not require any model fine-tuning. Through comparative analysis with existing methods such as Chain-of-Thoughts(CoT) and Reasoning viA Planning(RAP), REX-based methods demonstrate comparable performance and, in certain cases, even surpass the results achieved by these existing techniques. Notably, REX-based methods exhibit remarkable reductions in execution time, enhancing their practical applicability across a diverse set of scenarios.

Viaarxiv icon

Sample-Efficient Learning of POMDPs with Multiple Observations In Hindsight

Jul 06, 2023
Jiacheng Guo, Minshuo Chen, Huan Wang, Caiming Xiong, Mengdi Wang, Yu Bai

This paper studies the sample-efficiency of learning in Partially Observable Markov Decision Processes (POMDPs), a challenging problem in reinforcement learning that is known to be exponentially hard in the worst-case. Motivated by real-world settings such as loading in game playing, we propose an enhanced feedback model called ``multiple observations in hindsight'', where after each episode of interaction with the POMDP, the learner may collect multiple additional observations emitted from the encountered latent states, but may not observe the latent states themselves. We show that sample-efficient learning under this feedback model is possible for two new subclasses of POMDPs: \emph{multi-observation revealing POMDPs} and \emph{distinguishable POMDPs}. Both subclasses generalize and substantially relax \emph{revealing POMDPs} -- a widely studied subclass for which sample-efficient learning is possible under standard trajectory feedback. Notably, distinguishable POMDPs only require the emission distributions from different latent states to be \emph{different} instead of \emph{linearly independent} as required in revealing POMDPs.

Viaarxiv icon

Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Jun 07, 2023
Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, Song Mei

Figure 1 for Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection
Figure 2 for Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection
Figure 3 for Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection
Figure 4 for Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection

Neural sequence models based on the transformer architecture have demonstrated remarkable \emph{in-context learning} (ICL) abilities, where they can perform new tasks when prompted with training and test examples, without any parameter update to the model. This work first provides a comprehensive statistical theory for transformers to perform ICL. Concretely, we show that transformers can implement a broad class of standard machine learning algorithms in context, such as least squares, ridge regression, Lasso, learning generalized linear models, and gradient descent on two-layer neural networks, with near-optimal predictive power on various in-context data distributions. Using an efficient implementation of in-context gradient descent as the underlying mechanism, our transformer constructions admit mild size bounds, and can be learned with polynomially many pretraining sequences. Building on these ``base'' ICL algorithms, intriguingly, we show that transformers can implement more complex ICL procedures involving \emph{in-context algorithm selection}, akin to what a statistician can do in real life -- A \emph{single} transformer can adaptively select different base ICL algorithms -- or even perform qualitatively different tasks -- on different input sequences, without any explicit prompting of the right algorithm or task. We both establish this in theory by explicit constructions, and also observe this phenomenon experimentally. In theory, we construct two general mechanisms for algorithm selection with concrete examples: pre-ICL testing, and post-ICL validation. As an example, we use the post-ICL validation mechanism to construct a transformer that can perform nearly Bayes-optimal ICL on a challenging task -- noisy linear models with mixed noise levels. Experimentally, we demonstrate the strong in-context algorithm selection capabilities of standard transformer architectures.

Viaarxiv icon