Abstract:Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making. Automatic chart understanding has witnessed significant advancements with the rise of large foundation models in recent years. Foundation models, such as large language models, have revolutionized various natural language processing tasks and are increasingly being applied to chart understanding tasks. This survey paper provides a comprehensive overview of the recent developments, challenges, and future directions in chart understanding within the context of these foundation models. We review fundamental building blocks crucial for studying chart understanding tasks. Additionally, we explore various tasks and their evaluation metrics and sources of both charts and textual inputs. Various modeling strategies are then examined, encompassing both classification-based and generation-based approaches, along with tool augmentation techniques that enhance chart understanding performance. Furthermore, we discuss the state-of-the-art performance of each task and discuss how we can improve the performance. Challenges and future directions are addressed, highlighting the importance of several topics, such as domain-specific charts, lack of efforts in developing evaluation metrics, and agent-oriented settings. This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis, providing valuable insights and directions for future research in chart understanding leveraging large foundation models. The studies mentioned in this paper, along with emerging new research, will be continually updated at: https://github.com/khuangaf/Awesome-Chart-Understanding.
Abstract:Fact-checking research has extensively explored verification but less so the generation of natural-language explanations, crucial for user trust. While Large Language Models (LLMs) excel in text generation, their capability for producing faithful explanations in fact-checking remains underexamined. Our study investigates LLMs' ability to generate such explanations, finding that zero-shot prompts often result in unfaithfulness. To address these challenges, we propose the Multi-Agent Debate Refinement (MADR) framework, leveraging multiple LLMs as agents with diverse roles in an iterative refining process aimed at enhancing faithfulness in generated explanations. MADR ensures that the final explanation undergoes rigorous validation, significantly reducing the likelihood of unfaithful elements and aligning closely with the provided evidence. Experimental results demonstrate that MADR significantly improves the faithfulness of LLM-generated explanations to the evidence, advancing the credibility and trustworthiness of these explanations.
Abstract:Recent advancements in large vision-language models (LVLMs) have led to significant progress in generating natural language descriptions for visual content and thus enhancing various applications. One issue with these powerful models is that they sometimes produce texts that are factually inconsistent with the visual input. While there has been some effort to mitigate such inconsistencies in natural image captioning, the factuality of generated captions for structured document images, such as charts, has not received as much scrutiny, posing a potential threat to information reliability in critical applications. This work delves into the factuality aspect by introducing a comprehensive typology of factual errors in generated chart captions. A large-scale human annotation effort provides insight into the error patterns and frequencies in captions crafted by various chart captioning models, ultimately forming the foundation of a novel dataset, CHOCOLATE. Our analysis reveals that even state-of-the-art models, including GPT-4V, frequently produce captions laced with factual inaccuracies. In response to this challenge, we establish the new task of Chart Caption Factual Error Correction and introduce CHARTVE, a model for visual entailment that outperforms proprietary and open-source LVLMs in evaluating factual consistency. Furthermore, we propose C2TFEC, an interpretable two-stage framework that excels at correcting factual errors. This work inaugurates a new domain in factual error correction for chart captions, presenting a novel evaluation mechanism, and demonstrating an effective approach to ensuring the factuality of generated chart captions.
Abstract:Ensuring factual consistency is crucial in various natural language processing tasks, particularly in abstractive summarization, where preserving the integrity of information is paramount. Prior entailment-based approaches often generate factually inconsistent summaries and then train a classifier on the generated data. However, summaries produced by these approaches are either of low coherence or lack error-type coverage. To address these issues, we propose AMRFact, a novel framework that generates factually inconsistent summaries using Abstract Meaning Representation (AMR). Our approach parses factually correct summaries into AMR graphs and injects controlled factual inconsistencies to create negative examples, allowing for coherent factually inconsistent summaries to be generated with high error-type coverage. Additionally, we present a data selection module NegFilter based on natural language inference and BARTScore to ensure the quality of the generated negative samples. Experimental results demonstrate that our approach significantly outperforms previous systems on the AggreFact-SOTA dataset, showcasing its efficacy in assessing factuality in abstractive summarization.
Abstract:Previous research in multi-document news summarization has typically concentrated on collating information that all sources agree upon. However, to our knowledge, the summarization of diverse information dispersed across multiple articles about an event has not been previously investigated. The latter imposes a different set of challenges for a summarization model. In this paper, we propose a new task of summarizing diverse information encountered in multiple news articles encompassing the same event. To facilitate this task, we outlined a data collection schema for identifying diverse information and curated a dataset named DiverseSumm. The dataset includes 245 news stories, with each story comprising 10 news articles and paired with a human-validated reference. Moreover, we conducted a comprehensive analysis to pinpoint the position and verbosity biases when utilizing Large Language Model (LLM)-based metrics for evaluating the coverage and faithfulness of the summaries, as well as their correlation with human assessments. We applied our findings to study how LLMs summarize multiple news articles by analyzing which type of diverse information LLMs are capable of identifying. Our analyses suggest that despite the extraordinary capabilities of LLMs in single-document summarization, the proposed task remains a complex challenge for them mainly due to their limited coverage, with GPT-4 only able to cover less than 40% of the diverse information on average.
Abstract:Considerable advancements have been made to tackle the misrepresentation of information derived from reference articles in the domains of fact-checking and faithful summarization. However, an unaddressed aspect remains - the identification of social media posts that manipulate information within associated news articles. This task presents a significant challenge, primarily due to the prevalence of personal opinions in such posts. We present a novel task, identifying manipulation of news on social media, which aims to detect manipulation in social media posts and identify manipulated or inserted information. To study this task, we have proposed a data collection schema and curated a dataset called ManiTweet, consisting of 3.6K pairs of tweets and corresponding articles. Our analysis demonstrates that this task is highly challenging, with large language models (LLMs) yielding unsatisfactory performance. Additionally, we have developed a simple yet effective basic model that outperforms LLMs significantly on the ManiTweet dataset. Finally, we have conducted an exploratory analysis of human-written tweets, unveiling intriguing connections between manipulation and the domain and factuality of news articles, as well as revealing that manipulated sentences are more likely to encapsulate the main story or consequences of a news outlet.
Abstract:Faithfully correcting factual errors is critical for maintaining the integrity of textual knowledge bases and preventing hallucinations in sequence-to-sequence models. Drawing on humans' ability to identify and correct factual errors, we present a zero-shot framework that formulates questions about input claims, looks for correct answers in the given evidence, and assesses the faithfulness of each correction based on its consistency with the evidence. Our zero-shot framework outperforms fully-supervised approaches, as demonstrated by experiments on the FEVER and SciFact datasets, where our outputs are shown to be more faithful. More importantly, the decomposability nature of our framework inherently provides interpretability. Additionally, to reveal the most suitable metrics for evaluating factual error corrections, we analyze the correlation between commonly used metrics with human judgments in terms of three different dimensions regarding intelligibility and faithfulness.
Abstract:Missing information is a common issue of dialogue summarization where some information in the reference summaries is not covered in the generated summaries. To address this issue, we propose to utilize natural language inference (NLI) models to improve coverage while avoiding introducing factual inconsistencies. Specifically, we use NLI to compute fine-grained training signals to encourage the model to generate content in the reference summaries that have not been covered, as well as to distinguish between factually consistent and inconsistent generated sentences. Experiments on the DialogSum and SAMSum datasets confirm the effectiveness of the proposed approach in balancing coverage and faithfulness, validated with automatic metrics and human evaluations. Additionally, we compute the correlation between commonly used automatic metrics with human judgments in terms of three different dimensions regarding coverage and factual consistency to provide insight into the most suitable metric for evaluating dialogue summaries.
Abstract:Fact-checking has gained increasing attention due to the widespread of falsified information. Most fact-checking approaches focus on claims made in English only due to the data scarcity issue in other languages. The lack of fact-checking datasets in low-resource languages calls for an effective cross-lingual transfer technique for fact-checking. Additionally, trustworthy information in different languages can be complementary and helpful in verifying facts. To this end, we present the first fact-checking framework augmented with cross-lingual retrieval that aggregates evidence retrieved from multiple languages through a cross-lingual retriever. Given the absence of cross-lingual information retrieval datasets with claim-like queries, we train the retriever with our proposed Cross-lingual Inverse Cloze Task (X-ICT), a self-supervised algorithm that creates training instances by translating the title of a passage. The goal for X-ICT is to learn cross-lingual retrieval in which the model learns to identify the passage corresponding to a given translated title. On the X-Fact dataset, our approach achieves 2.23% absolute F1 improvement in the zero-shot cross-lingual setup over prior systems. The source code and data are publicly available at https://github.com/khuangaf/CONCRETE.
Abstract:While there has been a lot of research and many recent advances in neural fake news detection, defending against human-written disinformation remains underexplored. Upon analyzing current approaches for fake news generation and human-crafted articles, we found that there is a gap between them, which can explain the poor performance on detecting human-written fake news for detectors trained on automatically generated data. To address this issue, we propose a novel framework for generating articles closer to human-written ones. Specifically, we perform self-critical sequence training with natural language inference to ensure the validity of the generated articles. We then explicitly incorporate propaganda techniques into the generated articles to mimic how humans craft fake news. Eventually, we create a fake news detection training dataset, PropaNews, which includes 2,256 examples. Our experimental results show that detectors trained on PropaNews are 7.3% to 12.0% more accurate for detecting human-written disinformation than for counterparts trained on data generated by state-of-the-art approaches.