Abstract:While AI agents hold transformative potential in business, effective performance benchmarking is hindered by the scarcity of public, realistic business data on widely used platforms. Existing benchmarks often lack fidelity in their environments, data, and agent-user interactions, with limited coverage of diverse business scenarios and industries. To address these gaps, we introduce CRMArena-Pro, a novel benchmark for holistic, realistic assessment of LLM agents in diverse professional settings. CRMArena-Pro expands on CRMArena with nineteen expert-validated tasks across sales, service, and 'configure, price, and quote' processes, for both Business-to-Business and Business-to-Customer scenarios. It distinctively incorporates multi-turn interactions guided by diverse personas and robust confidentiality awareness assessments. Experiments reveal leading LLM agents achieve only around 58% single-turn success on CRMArena-Pro, with performance dropping significantly to approximately 35% in multi-turn settings. While Workflow Execution proves more tractable for top agents (over 83% single-turn success), other evaluated business skills present greater challenges. Furthermore, agents exhibit near-zero inherent confidentiality awareness; though targeted prompting can improve this, it often compromises task performance. These findings highlight a substantial gap between current LLM capabilities and enterprise demands, underscoring the need for advancements in multi-turn reasoning, confidentiality adherence, and versatile skill acquisition.
Abstract:Large vision-language models (LVLMs) are increasingly deployed in globally distributed applications, such as tourism assistants, yet their ability to produce culturally appropriate responses remains underexplored. Existing multimodal safety benchmarks primarily focus on physical safety and overlook violations rooted in cultural norms, which can result in symbolic harm. To address this gap, we introduce CROSS, a benchmark designed to assess the cultural safety reasoning capabilities of LVLMs. CROSS includes 1,284 multilingual visually grounded queries from 16 countries, three everyday domains, and 14 languages, where cultural norm violations emerge only when images are interpreted in context. We propose CROSS-Eval, an intercultural theory-based framework that measures four key dimensions: cultural awareness, norm education, compliance, and helpfulness. Using this framework, we evaluate 21 leading LVLMs, including mixture-of-experts models and reasoning models. Results reveal significant cultural safety gaps: the best-performing model achieves only 61.79% in awareness and 37.73% in compliance. While some open-source models reach GPT-4o-level performance, they still fall notably short of proprietary models. Our results further show that increasing reasoning capacity improves cultural alignment but does not fully resolve the issue. To improve model performance, we develop two enhancement strategies: supervised fine-tuning with culturally grounded, open-ended data and preference tuning with contrastive response pairs that highlight safe versus unsafe behaviors. These methods substantially improve GPT-4o's cultural awareness (+60.14%) and compliance (+55.2%), while preserving general multimodal capabilities with minimal performance reduction on general multimodal understanding benchmarks.
Abstract:Vision Language Models (VLMs) have achieved remarkable progress in multimodal tasks, yet they often struggle with visual arithmetic, seemingly simple capabilities like object counting or length comparison, which are essential for relevant complex tasks like chart understanding and geometric reasoning. In this work, we first investigate the root causes of this deficiency through a suite of probing tasks focusing on basic visual arithmetic. Our analysis reveals that while pre-trained vision encoders typically capture sufficient information, the text decoder often fails to decode it correctly for arithmetic reasoning. To address this, we propose CogAlign, a novel post-training strategy inspired by Piaget's theory of cognitive development. CogAlign trains VLMs to recognize invariant properties under visual transformations. We demonstrate that this approach significantly improves the performance of three diverse VLMs on our proposed probing tasks. Furthermore, CogAlign enhances performance by an average of 4.6% on CHOCOLATE and 2.9% on MATH-VISION, outperforming or matching supervised fine-tuning methods while requiring only 60% less training data. These results highlight the effectiveness and generalizability of CogAlign in improving fundamental visual arithmetic capabilities and their transfer to downstream tasks.
Abstract:In the rapidly evolving field of Large Language Models (LLMs), ensuring safety is a crucial and widely discussed topic. However, existing works often overlook the geo-diversity of cultural and legal standards across the world. To demonstrate the challenges posed by geo-diverse safety standards, we introduce SafeWorld, a novel benchmark specifically designed to evaluate LLMs' ability to generate responses that are not only helpful but also culturally sensitive and legally compliant across diverse global contexts. SafeWorld encompasses 2,342 test user queries, each grounded in high-quality, human-verified cultural norms and legal policies from 50 countries and 493 regions/races. On top of it, we propose a multi-dimensional automatic safety evaluation framework that assesses the contextual appropriateness, accuracy, and comprehensiveness of responses. Our evaluations reveal that current LLMs struggle to meet these criteria. To enhance LLMs' alignment with geo-diverse safety standards, we synthesize helpful preference pairs for Direct Preference Optimization (DPO) alignment training. The preference pair construction aims to encourage LLMs to behave appropriately and provide precise references to relevant cultural norms and policies when necessary. Our trained SafeWorldLM outperforms all competing models, including GPT-4o on all three evaluation dimensions by a large margin. Global human evaluators also note a nearly 20% higher winning rate in helpfulness and harmfulness evaluation. Our code and data can be found here: https://github.com/PlusLabNLP/SafeWorld.
Abstract:As events progress, news articles often update with new information: if we are not cautious, we risk propagating outdated facts. In this work, we hypothesize that linguistic features indicate factual fluidity, and that we can predict which facts in a news article will update using solely the text of a news article (i.e. not external resources like search engines). We test this hypothesis, first, by isolating fact-updates in large news revisions corpora. News articles may update for many reasons (e.g. factual, stylistic, narrative). We introduce the NewsEdits 2.0 taxonomy, an edit-intentions schema that separates fact updates from stylistic and narrative updates in news writing. We annotate over 9,200 pairs of sentence revisions and train high-scoring ensemble models to apply this schema. Then, taking a large dataset of silver-labeled pairs, we show that we can predict when facts will update in older article drafts with high precision. Finally, to demonstrate the usefulness of these findings, we construct a language model question asking (LLM-QA) abstention task. We wish the LLM to abstain from answering questions when information is likely to become outdated. Using our predictions, we show, LLM absention reaches near oracle levels of accuracy.
Abstract:Customer Relationship Management (CRM) systems are vital for modern enterprises, providing a foundation for managing customer interactions and data. Integrating AI agents into CRM systems can automate routine processes and enhance personalized service. However, deploying and evaluating these agents is challenging due to the lack of realistic benchmarks that reflect the complexity of real-world CRM tasks. To address this issue, we introduce CRMArena, a novel benchmark designed to evaluate AI agents on realistic tasks grounded in professional work environments. Following guidance from CRM experts and industry best practices, we designed CRMArena with nine customer service tasks distributed across three personas: service agent, analyst, and manager. The benchmark includes 16 commonly used industrial objects (e.g., account, order, knowledge article, case) with high interconnectivity, along with latent variables (e.g., complaint habits, policy violations) to simulate realistic data distributions. Experimental results reveal that state-of-the-art LLM agents succeed in less than 40% of the tasks with ReAct prompting, and less than 55% even with function-calling abilities. Our findings highlight the need for enhanced agent capabilities in function-calling and rule-following to be deployed in real-world work environments. CRMArena is an open challenge to the community: systems that can reliably complete tasks showcase direct business value in a popular work environment.
Abstract:As large language models (LLMs) expand into performing as agents for real-world applications beyond traditional NLP tasks, evaluating their robustness becomes increasingly important. However, existing benchmarks often overlook critical dimensions like cultural and social awareness. To address these, we introduce CASA, a benchmark designed to assess LLM agents' sensitivity to cultural and social norms across two web-based tasks: online shopping and social discussion forums. Our approach evaluates LLM agents' ability to detect and appropriately respond to norm-violating user queries and observations. Furthermore, we propose a comprehensive evaluation framework that measures awareness coverage, helpfulness in managing user queries, and the violation rate when facing misleading web content. Experiments show that current LLMs perform significantly better in non-agent than in web-based agent environments, with agents achieving less than 10% awareness coverage and over 40% violation rates. To improve performance, we explore two methods: prompting and fine-tuning, and find that combining both methods can offer complementary advantages -- fine-tuning on culture-specific datasets significantly enhances the agents' ability to generalize across different regions, while prompting boosts the agents' ability to navigate complex tasks. These findings highlight the importance of constantly benchmarking LLM agents' cultural and social awareness during the development cycle.
Abstract:Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making. Automatic chart understanding has witnessed significant advancements with the rise of large foundation models in recent years. Foundation models, such as large language models, have revolutionized various natural language processing tasks and are increasingly being applied to chart understanding tasks. This survey paper provides a comprehensive overview of the recent developments, challenges, and future directions in chart understanding within the context of these foundation models. We review fundamental building blocks crucial for studying chart understanding tasks. Additionally, we explore various tasks and their evaluation metrics and sources of both charts and textual inputs. Various modeling strategies are then examined, encompassing both classification-based and generation-based approaches, along with tool augmentation techniques that enhance chart understanding performance. Furthermore, we discuss the state-of-the-art performance of each task and discuss how we can improve the performance. Challenges and future directions are addressed, highlighting the importance of several topics, such as domain-specific charts, lack of efforts in developing evaluation metrics, and agent-oriented settings. This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis, providing valuable insights and directions for future research in chart understanding leveraging large foundation models. The studies mentioned in this paper, along with emerging new research, will be continually updated at: https://github.com/khuangaf/Awesome-Chart-Understanding.
Abstract:Fact-checking research has extensively explored verification but less so the generation of natural-language explanations, crucial for user trust. While Large Language Models (LLMs) excel in text generation, their capability for producing faithful explanations in fact-checking remains underexamined. Our study investigates LLMs' ability to generate such explanations, finding that zero-shot prompts often result in unfaithfulness. To address these challenges, we propose the Multi-Agent Debate Refinement (MADR) framework, leveraging multiple LLMs as agents with diverse roles in an iterative refining process aimed at enhancing faithfulness in generated explanations. MADR ensures that the final explanation undergoes rigorous validation, significantly reducing the likelihood of unfaithful elements and aligning closely with the provided evidence. Experimental results demonstrate that MADR significantly improves the faithfulness of LLM-generated explanations to the evidence, advancing the credibility and trustworthiness of these explanations.
Abstract:Recent advancements in large vision-language models (LVLMs) have led to significant progress in generating natural language descriptions for visual content and thus enhancing various applications. One issue with these powerful models is that they sometimes produce texts that are factually inconsistent with the visual input. While there has been some effort to mitigate such inconsistencies in natural image captioning, the factuality of generated captions for structured document images, such as charts, has not received as much scrutiny, posing a potential threat to information reliability in critical applications. This work delves into the factuality aspect by introducing a comprehensive typology of factual errors in generated chart captions. A large-scale human annotation effort provides insight into the error patterns and frequencies in captions crafted by various chart captioning models, ultimately forming the foundation of a novel dataset, CHOCOLATE. Our analysis reveals that even state-of-the-art models, including GPT-4V, frequently produce captions laced with factual inaccuracies. In response to this challenge, we establish the new task of Chart Caption Factual Error Correction and introduce CHARTVE, a model for visual entailment that outperforms proprietary and open-source LVLMs in evaluating factual consistency. Furthermore, we propose C2TFEC, an interpretable two-stage framework that excels at correcting factual errors. This work inaugurates a new domain in factual error correction for chart captions, presenting a novel evaluation mechanism, and demonstrating an effective approach to ensuring the factuality of generated chart captions.