We provide a simple and general solution for the discovery of scarce topics in unbalanced short-text datasets, namely, a word co-occurrence network-based model CWIBTD, which can simultaneously address the sparsity and unbalance of short-text topics and attenuate the effect of occasional pairwise occurrences of words, allowing the model to focus more on the discovery of scarce topics. Unlike previous approaches, CWIBTD uses co-occurrence word networks to model the topic distribution of each word, which improves the semantic density of the data space and ensures its sensitivity in identify-ing rare topics by improving the way node activity is calculated and normal-izing scarce topics and large topics to some extent. In addition, using the same Gibbs sampling as LDA makes CWIBTD easy to be extended to vari-ous application scenarios. Extensive experimental validation in the unbal-anced short text dataset confirms the superiority of CWIBTD over the base-line approach in discovering rare topics. Our model can be used for early and accurate discovery of emerging topics or unexpected events on social platforms.
Word embedding is a fundamental natural language processing task which can learn feature of words. However, most word embedding methods assign only one vector to a word, even if polysemous words have multi-senses. To address this limitation, we propose SememeWSD Synonym (SWSDS) model to assign a different vector to every sense of polysemous words with the help of word sense disambiguation (WSD) and synonym set in OpenHowNet. We use the SememeWSD model, an unsupervised word sense disambiguation model based on OpenHowNet, to do word sense disambiguation and annotate the polysemous word with sense id. Then, we obtain top 10 synonyms of the word sense from OpenHowNet and calculate the average vector of synonyms as the vector of the word sense. In experiments, We evaluate the SWSDS model on semantic similarity calculation with Gensim's wmdistance method. It achieves improvement of accuracy. We also examine the SememeWSD model on different BERT models to find the more effective model.
Graph Neural Networks (GNNs) have drawn tremendous attention due to their unique capability to extend Machine Learning (ML) approaches to applications broadly-defined as having unstructured data, especially graphs. Compared with other Machine Learning (ML) modalities, the acceleration of Graph Neural Networks (GNNs) is more challenging due to the irregularity and heterogeneity derived from graph typologies. Existing efforts, however, have focused mainly on handling graphs' irregularity and have not studied their heterogeneity. To this end we propose H-GCN, a PL (Programmable Logic) and AIE (AI Engine) based hybrid accelerator that leverages the emerging heterogeneity of Xilinx Versal Adaptive Compute Acceleration Platforms (ACAPs) to achieve high-performance GNN inference. In particular, H-GCN partitions each graph into three subgraphs based on its inherent heterogeneity, and processes them using PL and AIE, respectively. To further improve performance, we explore the sparsity support of AIE and develop an efficient density-aware method to automatically map tiles of sparse matrix-matrix multiplication (SpMM) onto the systolic tensor array. Compared with state-of-the-art GCN accelerators, H-GCN achieves, on average, speedups of 1.1~2.3X.
In the field of car evaluation, more and more netizens choose to express their opinions on the Internet platform, and these comments will affect the decision-making of buyers and the trend of car word-of-mouth. As an important branch of natural language processing (NLP), sentiment analysis provides an effective research method for analyzing the sentiment types of massive car review texts. However, due to the lexical professionalism and large text noise of review texts in the automotive field, when a general sentiment analysis model is applied to car reviews, the accuracy of the model will be poor. To overcome these above challenges, we aim at the sentiment analysis task of car review texts. From the perspective of word vectors, pre-training is carried out by means of whole word mask of proprietary vocabulary in the automotive field, and then training data is carried out through the strategy of an adversarial training set. Based on this, we propose a car review text sentiment analysis model based on adversarial training and whole word mask BERT(ATWWM-BERT).
With the development of online travel services, it has great application prospects to timely mine users' evaluation emotions for travel services and use them as indicators to guide the improvement of online travel service quality. In this paper, we study the text sentiment classification of online travel reviews based on social media online comments and propose the SCCL model based on capsule network and sentiment lexicon. SCCL model aims at the lack of consideration of local features and emotional semantic features of the text in the language model that can efficiently extract text context features like BERT and GRU. Then make the following improvements to their shortcomings. On the one hand, based on BERT-BiGRU, the capsule network is introduced to extract local features while retaining good context features. On the other hand, the sentiment lexicon is introduced to extract the emotional sequence of the text to provide richer emotional semantic features for the model. To enhance the universality of the sentiment lexicon, the improved SO-PMI algorithm based on TF-IDF is used to expand the lexicon, so that the lexicon can also perform well in the field of online travel reviews.
Being a promising model to be deployed in resource-limited devices, Binarized Neural Networks (BNNs) have drawn extensive attention from both academic and industry. However, comparing to the full-precision deep neural networks (DNNs), BNNs suffer from non-trivial accuracy degradation, limiting its applicability in various domains. This is partially because existing network components, such as the similarity measure, are specially designed for DNNs, and might be sub-optimal for BNNs. In this work, we focus on the key component of BNNs -- the similarity measure, which quantifies the distance between input feature maps and filters, and propose an automatic searching method, based on genetic algorithm, for BNN-tailored similarity measure. Evaluation results on Cifar10 and Cifar100 using ResNet, NIN and VGG show that most of the identified similarty measure can achieve considerable accuracy improvement (up to 3.39%) over the commonly-used cross-correlation approach.
Binary neural networks (BNNs) show promising utilization in cost and power-restricted domains such as edge devices and mobile systems. This is due to its significantly less computation and storage demand, but at the cost of degraded performance. To close the accuracy gap, in this paper we propose to add a complementary activation function (AF) ahead of the sign based binarization, and rely on the genetic algorithm (GA) to automatically search for the ideal AFs. These AFs can help extract extra information from the input data in the forward pass, while allowing improved gradient approximation in the backward pass. Fifteen novel AFs are identified through our GA-based search, while most of them show improved performance (up to 2.54% on ImageNet) when testing on different datasets and network models. Our method offers a novel approach for designing general and application-specific BNN architecture. Our code is available at http://github.com/flying-Yan/GAAF.
With the rapid development of information technology, "information overload" has become the main theme that plagues people's online life. As an effective tool to help users quickly search for useful information, a personalized recommendation is more and more popular among people. In order to solve the sparsity problem of the traditional matrix factorization algorithm and the problem of low utilization of review document information, this paper proposes a Bicon-vMF algorithm based on improved ConvMF. This algorithm uses two parallel convolutional neural networks to extract deep features from the user review set and item review set respectively and fuses these features into the decomposition of the rating matrix, so as to construct the user latent model and the item latent model more accurately. The experimental results show that compared with traditional recommendation algorithms like PMF, ConvMF, and DeepCoNN, the method proposed in this paper has lower prediction error and can achieve a better recommendation effect. Specifically, compared with the previous three algorithms, the prediction errors of the algorithm proposed in this paper are reduced by 45.8%, 16.6%, and 34.9%, respectively.
Monocular 3D object detection (Mono3D) has achieved tremendous improvements with emerging large-scale autonomous driving datasets and the rapid development of deep learning techniques. However, caused by severe domain gaps (e.g., the field of view (FOV), pixel size, and object size among datasets), Mono3D detectors have difficulty in generalization, leading to drastic performance degradation on unseen domains. To solve these issues, we combine the position-invariant transform and multi-scale training with the pixel-size depth strategy to construct an effective unified camera-generalized paradigm (CGP). It fully considers discrepancies in the FOV and pixel size of images captured by different cameras. Moreover, we further investigate the obstacle in quantitative metrics when cross-dataset inference through an exhaustive systematic study. We discern that the size bias of prediction leads to a colossal failure. Hence, we propose the 2D-3D geometry-consistent object scaling strategy (GCOS) to bridge the gap via an instance-level augment. Our method called DGMono3D achieves remarkable performance on all evaluated datasets and surpasses the SoTA unsupervised domain adaptation scheme even without utilizing data on the target domain.