Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Exploration in Interactive Personalized Music Recommendation: A Reinforcement Learning Approach

Nov 06, 2013
Xinxi Wang, Yi Wang, David Hsu, Ye Wang

Current music recommender systems typically act in a greedy fashion by recommending songs with the highest user ratings. Greedy recommendation, however, is suboptimal over the long term: it does not actively gather information on user preferences and fails to recommend novel songs that are potentially interesting. A successful recommender system must balance the needs to explore user preferences and to exploit this information for recommendation. This paper presents a new approach to music recommendation by formulating this exploration-exploitation trade-off as a reinforcement learning task called the multi-armed bandit. To learn user preferences, it uses a Bayesian model, which accounts for both audio content and the novelty of recommendations. A piecewise-linear approximation to the model and a variational inference algorithm are employed to speed up Bayesian inference. One additional benefit of our approach is a single unified model for both music recommendation and playlist generation. Both simulation results and a user study indicate strong potential for the new approach.


  Access Paper or Ask Questions

Comparative Explanations of Recommendations

Nov 01, 2021
Aobo Yang, Nan Wang, Renqin Cai, Hongbo Deng, Hongning Wang

As recommendation is essentially a comparative (or ranking) process, a good explanation should illustrate to users why an item is believed to be better than another, i.e., comparative explanations about the recommended items. Ideally, after reading the explanations, a user should reach the same ranking of items as the system's. Unfortunately, little research attention has yet been paid on such comparative explanations. In this work, we develop an extract-and-refine architecture to explain the relative comparisons among a set of ranked items from a recommender system. For each recommended item, we first extract one sentence from its associated reviews that best suits the desired comparison against a set of reference items. Then this extracted sentence is further articulated with respect to the target user through a generative model to better explain why the item is recommended. We design a new explanation quality metric based on BLEU to guide the end-to-end training of the extraction and refinement components, which avoids generation of generic content. Extensive offline evaluations on two large recommendation benchmark datasets and serious user studies against an array of state-of-the-art explainable recommendation algorithms demonstrate the necessity of comparative explanations and the effectiveness of our solution.

* 17 pages, 4 figures 

  Access Paper or Ask Questions

A Systematic Review on Context-Aware Recommender Systems using Deep Learning and Embeddings

Jul 09, 2020
Igor André Pegoraro Santana, Marcos Aurelio Domingues

Recommender Systems are tools that improve how users find relevant information in web systems, so they do not face too much information. In order to generate better recommendations, the context of information should be used in the recommendation process. Context-Aware Recommender Systems were created, accomplishing state-of-the-art results and improving traditional recommender systems. There are many approaches to build recommender systems, and two of the most prominent advances in area have been the use of Embeddings to represent the data in the recommender system, and the use of Deep Learning architectures to generate the recommendations to the user. A systematic review adopts a formal and systematic method to perform a bibliographic review, and it is used to identify and evaluate all the research in certain area of study, by analyzing the relevant research published. A systematic review was conducted to understand how the Deep Learning and Embeddings techniques are being applied to improve Context-Aware Recommender Systems. We summarized the architectures that are used to create those and the domains that they are used.

* 15 pages 

  Access Paper or Ask Questions

From Word Embeddings to Item Recommendation

Jun 15, 2016
Makbule Gulcin Ozsoy

Social network platforms can use the data produced by their users to serve them better. One of the services these platforms provide is recommendation service. Recommendation systems can predict the future preferences of users using their past preferences. In the recommendation systems literature there are various techniques, such as neighborhood based methods, machine-learning based methods and matrix-factorization based methods. In this work, a set of well known methods from natural language processing domain, namely Word2Vec, is applied to recommendation systems domain. Unlike previous works that use Word2Vec for recommendation, this work uses non-textual features, the check-ins, and it recommends venues to visit/check-in to the target users. For the experiments, a Foursquare check-in dataset is used. The results show that use of continuous vector space representations of items modeled by techniques of Word2Vec is promising for making recommendations.


  Access Paper or Ask Questions

Long-tail Session-based Recommendation

Aug 04, 2020
Siyi Liu, Yujia Zheng

Session-based recommendation focuses on the prediction of user actions based on anonymous sessions and is a necessary method in the lack of user historical data. However, none of the existing session-based recommendation methods explicitly takes the long-tail recommendation into consideration, which plays an important role in improving the diversity of recommendation and producing the serendipity. As the distribution of items with long-tail is prevalent in session-based recommendation scenarios (e.g., e-commerce, music, and TV program recommendations), more attention should be put on the long-tail session-based recommendation. In this paper, we propose a novel network architecture, namely TailNet, to improve long-tail recommendation performance, while maintaining competitive accuracy performance compared with other methods. We start by classifying items into short-head (popular) and long-tail (niche) items based on click frequency. Then a novel is proposed and applied in TailNet to determine user preference between two types of items, so as to softly adjust and personalize recommendations. Extensive experiments on two real-world datasets verify the superiority of our method compared with state-of-the-art works.

* Accepted at RecSys 2020 

  Access Paper or Ask Questions

Review of Clustering-Based Recommender Systems

Sep 27, 2021
Irina Beregovskaya, Mikhail Koroteev

Recommender systems are one of the most applied methods in machine learning and find applications in many areas, ranging from economics to the Internet of things. This article provides a general overview of modern approaches to recommender system design using clustering as a preliminary step to improve overall performance. Using clustering can address several known issues in recommendation systems, including increasing the diversity, consistency, and reliability of recommendations; the data sparsity of user-preference matrices; and changes in user preferences over time. This work will be useful for both beginners in the field of recommender systems and specialists in related fields that are interested in examining the applicability of recommender systems. This review is focused on the analysis of the scientific literature on the topics of recommender systems and clustering models that have appeared in recent years and contains a representative list of the literature for the further exploration of this topic. In the first part, a brief introduction to the so-called classic or traditional recommendation algorithms is given, along with an overview of the clustering problem.

* 22 pages, 16 equasions 

  Access Paper or Ask Questions

Beyond Personalization: Research Directions in Multistakeholder Recommendation

May 01, 2019
Himan Abdollahpouri, Gediminas Adomavicius, Robin Burke, Ido Guy, Dietmar Jannach, Toshihiro Kamishima, Jan Krasnodebski, Luiz Pizzato

Recommender systems are personalized information access applications; they are ubiquitous in today's online environment, and effective at finding items that meet user needs and tastes. As the reach of recommender systems has extended, it has become apparent that the single-minded focus on the user common to academic research has obscured other important aspects of recommendation outcomes. Properties such as fairness, balance, profitability, and reciprocity are not captured by typical metrics for recommender system evaluation. The concept of multistakeholder recommendation has emerged as a unifying framework for describing and understanding recommendation settings where the end user is not the sole focus. This article describes the origins of multistakeholder recommendation, and the landscape of system designs. It provides illustrative examples of current research, as well as outlining open questions and research directions for the field.

* 66 pages 

  Access Paper or Ask Questions

A Differntiable Ranking Metric Using Relaxed Sorting Opeartor for Top-K Recommender Systems

Aug 30, 2020
Hyunsung Lee, Yeongjae Jang, Jaekwang Kim, Honguk Woo

A recommender system recommends a few items for a user by sorting items according to their predicted preferences and filter items with the highest predicted preferences. While sorting and selecting top-K items are an inherent part of the personalized recommendation, it is nontrivial to incorporate them in the process of end-to-end model training since sorting is not differentiable and impossible to optimize with gradient based updates. Instead, existing recommenders optimize surrogate objectives, often rendering suboptimal quality of recommendations. In this paper, we propose the differentiable ranking metrics (DRM), a differentiable relaxation of evaluation metrics such as Precision and Recall. DRM maximizes the evaluation metrics for recommendation models directly. Via experiments with several real-world datasets, we demonstrate that the joint learning of the DRM cost function upon existing factor-based recommendation models improves the quality of recommendations significantly, in comparison with other state-of-the-art recommendation methods.

* 12 pages, 3 figures 

  Access Paper or Ask Questions

Poisoning Attacks to Graph-Based Recommender Systems

Sep 11, 2018
Minghong Fang, Guolei Yang, Neil Zhenqiang Gong, Jia Liu

Recommender system is an important component of many web services to help users locate items that match their interests. Several studies showed that recommender systems are vulnerable to poisoning attacks, in which an attacker injects fake data to a given system such that the system makes recommendations as the attacker desires. However, these poisoning attacks are either agnostic to recommendation algorithms or optimized to recommender systems that are not graph-based. Like association-rule-based and matrix-factorization-based recommender systems, graph-based recommender system is also deployed in practice, e.g., eBay, Huawei App Store. However, how to design optimized poisoning attacks for graph-based recommender systems is still an open problem. In this work, we perform a systematic study on poisoning attacks to graph-based recommender systems. Due to limited resources and to avoid detection, we assume the number of fake users that can be injected into the system is bounded. The key challenge is how to assign rating scores to the fake users such that the target item is recommended to as many normal users as possible. To address the challenge, we formulate the poisoning attacks as an optimization problem, solving which determines the rating scores for the fake users. We also propose techniques to solve the optimization problem. We evaluate our attacks and compare them with existing attacks under white-box (recommendation algorithm and its parameters are known), gray-box (recommendation algorithm is known but its parameters are unknown), and black-box (recommendation algorithm is unknown) settings using two real-world datasets. Our results show that our attack is effective and outperforms existing attacks for graph-based recommender systems. For instance, when 1% fake users are injected, our attack can make a target item recommended to 580 times more normal users in certain scenarios.

* 34th Annual Computer Security Applications Conference (ACSAC), 2018; Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract appearing here is slightly shorter than that in the PDF file 

  Access Paper or Ask Questions

<<
1
2
3
4
5
6
7
8
9
10
11
12
13
>>