What is Object Detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Jun 06, 2025
Abstract:Cross-Domain Few-Shot Object Detection (CD-FSOD) aims to detect novel objects with only a handful of labeled samples from previously unseen domains. While data augmentation and generative methods have shown promise in few-shot learning, their effectiveness for CD-FSOD remains unclear due to the need for both visual realism and domain alignment. Existing strategies, such as copy-paste augmentation and text-to-image generation, often fail to preserve the correct object category or produce backgrounds coherent with the target domain, making them non-trivial to apply directly to CD-FSOD. To address these challenges, we propose Domain-RAG, a training-free, retrieval-guided compositional image generation framework tailored for CD-FSOD. Domain-RAG consists of three stages: domain-aware background retrieval, domain-guided background generation, and foreground-background composition. Specifically, the input image is first decomposed into foreground and background regions. We then retrieve semantically and stylistically similar images to guide a generative model in synthesizing a new background, conditioned on both the original and retrieved contexts. Finally, the preserved foreground is composed with the newly generated domain-aligned background to form the generated image. Without requiring any additional supervision or training, Domain-RAG produces high-quality, domain-consistent samples across diverse tasks, including CD-FSOD, remote sensing FSOD, and camouflaged FSOD. Extensive experiments show consistent improvements over strong baselines and establish new state-of-the-art results. Codes will be released upon acceptance.
Via

Jun 09, 2025
Abstract:With the increasing availability of aerial and satellite imagery, deep learning presents significant potential for transportation asset management, safety analysis, and urban planning. This study introduces CrosswalkNet, a robust and efficient deep learning framework designed to detect various types of pedestrian crosswalks from 15-cm resolution aerial images. CrosswalkNet incorporates a novel detection approach that improves upon traditional object detection strategies by utilizing oriented bounding boxes (OBB), enhancing detection precision by accurately capturing crosswalks regardless of their orientation. Several optimization techniques, including Convolutional Block Attention, a dual-branch Spatial Pyramid Pooling-Fast module, and cosine annealing, are implemented to maximize performance and efficiency. A comprehensive dataset comprising over 23,000 annotated crosswalk instances is utilized to train and validate the proposed framework. The best-performing model achieves an impressive precision of 96.5% and a recall of 93.3% on aerial imagery from Massachusetts, demonstrating its accuracy and effectiveness. CrosswalkNet has also been successfully applied to datasets from New Hampshire, Virginia, and Maine without transfer learning or fine-tuning, showcasing its robustness and strong generalization capability. Additionally, the crosswalk detection results, processed using High-Performance Computing (HPC) platforms and provided in polygon shapefile format, have been shown to accelerate data processing and detection, supporting real-time analysis for safety and mobility applications. This integration offers policymakers, transportation engineers, and urban planners an effective instrument to enhance pedestrian safety and improve urban mobility.
Via

Jun 09, 2025
Abstract:Visible images offer rich texture details, while infrared images emphasize salient targets. Fusing these complementary modalities enhances scene understanding, particularly for advanced vision tasks under challenging conditions. Recently, deep learning-based fusion methods have gained attention, but current evaluations primarily rely on general-purpose metrics without standardized benchmarks or downstream task performance. Additionally, the lack of well-developed dual-spectrum datasets and fair algorithm comparisons hinders progress. To address these gaps, we construct a high-quality dual-spectrum dataset captured in campus environments, comprising 1,369 well-aligned visible-infrared image pairs across four representative scenarios: daytime, nighttime, smoke occlusion, and underpasses. We also propose a comprehensive and fair evaluation framework that integrates fusion speed, general metrics, and object detection performance using the lang-segment-anything model to ensure fairness in downstream evaluation. Extensive experiments benchmark several state-of-the-art fusion algorithms under this framework. Results demonstrate that fusion models optimized for downstream tasks achieve superior performance in target detection, especially in low-light and occluded scenes. Notably, some algorithms that perform well on general metrics do not translate to strong downstream performance, highlighting limitations of current evaluation practices and validating the necessity of our proposed framework. The main contributions of this work are: (1)a campus-oriented dual-spectrum dataset with diverse and challenging scenes; (2) a task-aware, comprehensive evaluation framework; and (3) thorough comparative analysis of leading fusion methods across multiple datasets, offering insights for future development.
* 11 pages, 13 figures
Via

Jun 05, 2025
Abstract:Annotated datasets are critical for training neural networks for object detection, yet their manual creation is time- and labour-intensive, subjective to human error, and often limited in diversity. This challenge is particularly pronounced in the domain of robotics, where diverse and dynamic scenarios further complicate the creation of representative datasets. To address this, we propose a novel method for automatically generating annotated synthetic data in Unreal Engine. Our approach leverages photorealistic 3D Gaussian splats for rapid synthetic data generation. We demonstrate that synthetic datasets can achieve performance comparable to that of real-world datasets while significantly reducing the time required to generate and annotate data. Additionally, combining real-world and synthetic data significantly increases object detection performance by leveraging the quality of real-world images with the easier scalability of synthetic data. To our knowledge, this is the first application of synthetic data for training object detection algorithms in the highly dynamic and varied environment of robot soccer. Validation experiments reveal that a detector trained on synthetic images performs on par with one trained on manually annotated real-world images when tested on robot soccer match scenarios. Our method offers a scalable and comprehensive alternative to traditional dataset creation, eliminating the labour-intensive error-prone manual annotation process. By generating datasets in a simulator where all elements are intrinsically known, we ensure accurate annotations while significantly reducing manual effort, which makes it particularly valuable for robotics applications requiring diverse and scalable training data.
Via

Jun 05, 2025
Abstract:3D semantic occupancy prediction aims to reconstruct the 3D geometry and semantics of the surrounding environment. With dense voxel labels, prior works typically formulate it as a dense segmentation task, independently classifying each voxel. However, this paradigm neglects critical instance-centric discriminability, leading to instance-level incompleteness and adjacent ambiguities. To address this, we highlight a free lunch of occupancy labels: the voxel-level class label implicitly provides insight at the instance level, which is overlooked by the community. Motivated by this observation, we first introduce a training-free Voxel-to-Instance (VoxNT) trick: a simple yet effective method that freely converts voxel-level class labels into instance-level offset labels. Building on this, we further propose VoxDet, an instance-centric framework that reformulates the voxel-level occupancy prediction as dense object detection by decoupling it into two sub-tasks: offset regression and semantic prediction. Specifically, based on the lifted 3D volume, VoxDet first uses (a) Spatially-decoupled Voxel Encoder to generate disentangled feature volumes for the two sub-tasks, which learn task-specific spatial deformation in the densely projected tri-perceptive space. Then, we deploy (b) Task-decoupled Dense Predictor to address this task via dense detection. Here, we first regress a 4D offset field to estimate distances (6 directions) between voxels and object borders in the voxel space. The regressed offsets are then used to guide the instance-level aggregation in the classification branch, achieving instance-aware prediction. Experiments show that VoxDet can be deployed on both camera and LiDAR input, jointly achieving state-of-the-art results on both benchmarks. VoxDet is not only highly efficient, but also achieves 63.0 IoU on the SemanticKITTI test set, ranking 1st on the online leaderboard.
Via

Jun 04, 2025
Abstract:Existing LiDAR 3D object detection methods predominantely rely on sparse convolutions and/or transformers, which can be challenging to run on resource-constrained edge devices, due to irregular memory access patterns and high computational costs. In this paper, we propose FALO, a hardware-friendly approach to LiDAR 3D detection, which offers both state-of-the-art (SOTA) detection accuracy and fast inference speed. More specifically, given the 3D point cloud and after voxelization, FALO first arranges sparse 3D voxels into a 1D sequence based on their coordinates and proximity. The sequence is then processed by our proposed ConvDotMix blocks, consisting of large-kernel convolutions, Hadamard products, and linear layers. ConvDotMix provides sufficient mixing capability in both spatial and embedding dimensions, and introduces higher-order nonlinear interaction among spatial features. Furthermore, when going through the ConvDotMix layers, we introduce implicit grouping, which balances the tensor dimensions for more efficient inference and takes into account the growing receptive field. All these operations are friendly to run on resource-constrained platforms and proposed FALO can readily deploy on compact, embedded devices. Our extensive evaluation on LiDAR 3D detection benchmarks such as nuScenes and Waymo shows that FALO achieves competitive performance. Meanwhile, FALO is 1.6~9.8x faster than the latest SOTA on mobile Graphics Processing Unit (GPU) and mobile Neural Processing Unit (NPU).
Via

Jun 05, 2025
Abstract:Recently, Large Language Models (LLMs) and Vision Large Language Models (VLLMs) have demonstrated impressive performance as agents across various tasks while data scarcity and label noise remain significant challenges in computer vision tasks, such as object detection and instance segmentation. A common solution for resolving these issues is to generate synthetic data. However, current synthetic data generation methods struggle with issues, such as multiple objects per mask, inaccurate segmentation, and incorrect category labels, limiting their effectiveness. To address these issues, we introduce Gen-n-Val, a novel agentic data generation framework that leverages Layer Diffusion (LD), LLMs, and VLLMs to produce high-quality, single-object masks and diverse backgrounds. Gen-n-Val consists of two agents: (1) The LD prompt agent, an LLM, optimizes prompts for LD to generate high-quality foreground instance images and segmentation masks. These optimized prompts ensure the generation of single-object synthetic data with precise instance masks and clean backgrounds. (2) The data validation agent, a VLLM, which filters out low-quality synthetic instance images. The system prompts for both agents are refined through TextGrad. Additionally, we use image harmonization to combine multiple instances within scenes. Compared to state-of-the-art synthetic data approaches like MosaicFusion, our approach reduces invalid synthetic data from 50% to 7% and improves performance by 1% mAP on rare classes in COCO instance segmentation with YOLOv9c and YOLO11m. Furthermore, Gen-n-Val shows significant improvements (7. 1% mAP) over YOLO-Worldv2-M in open-vocabulary object detection benchmarks with YOLO11m. Moreover, Gen-n-Val improves the performance of YOLOv9 and YOLO11 families in instance segmentation and object detection.
Via

Jun 06, 2025
Abstract:Understanding relationships between objects is central to visual intelligence, with applications in embodied AI, assistive systems, and scene understanding. Yet, most visual relationship detection (VRD) models rely on a fixed predicate set, limiting their generalization to novel interactions. A key challenge is the inability to visually ground semantically plausible, but unannotated, relationships hypothesized from external knowledge. This work introduces an iterative visual grounding framework that leverages large language models (LLMs) as structured relational priors. Inspired by expectation-maximization (EM), our method alternates between generating candidate scene graphs from detected objects using an LLM (expectation) and training a visual model to align these hypotheses with perceptual evidence (maximization). This process bootstraps relational understanding beyond annotated data and enables generalization to unseen predicates. Additionally, we introduce a new benchmark for open-world VRD on Visual Genome with 21 held-out predicates and evaluate under three settings: seen, unseen, and mixed. Our model outperforms LLM-only, few-shot, and debiased baselines, achieving mean recall (mR@50) of 15.9, 13.1, and 11.7 on predicate classification on these three sets. These results highlight the promise of grounded LLM priors for scalable open-world visual understanding.
* 22 pages, 9 figures, 5 tables
Via

Jun 07, 2025
Abstract:Visual parsing of images and videos is critical for a wide range of real-world applications. However, progress in this field is constrained by limitations of existing datasets: (1) insufficient annotation granularity, which impedes fine-grained scene understanding and high-level reasoning; (2) limited coverage of domains, particularly a lack of datasets tailored for educational scenarios; and (3) lack of explicit procedural guidance, with minimal logical rules and insufficient representation of structured task process. To address these gaps, we introduce PhysLab, the first video dataset that captures students conducting complex physics experiments. The dataset includes four representative experiments that feature diverse scientific instruments and rich human-object interaction (HOI) patterns. PhysLab comprises 620 long-form videos and provides multilevel annotations that support a variety of vision tasks, including action recognition, object detection, HOI analysis, etc. We establish strong baselines and perform extensive evaluations to highlight key challenges in the parsing of procedural educational videos. We expect PhysLab to serve as a valuable resource for advancing fine-grained visual parsing, facilitating intelligent classroom systems, and fostering closer integration between computer vision and educational technologies. The dataset and the evaluation toolkit are publicly available at https://github.com/ZMH-SDUST/PhysLab.
Via

Jun 10, 2025
Abstract:The performance of perception systems in autonomous driving systems (ADS) is strongly influenced by object distance, scene dynamics, and environmental conditions such as weather. AI-based perception outputs are inherently stochastic, with variability driven by these external factors, while traditional evaluation metrics remain static and event-independent, failing to capture fluctuations in confidence over time. In this work, we introduce the Perception Characteristics Distance (PCD) -- a novel evaluation metric that quantifies the farthest distance at which an object can be reliably detected, incorporating uncertainty in model outputs. To support this, we present the SensorRainFall dataset, collected on the Virginia Smart Road using a sensor-equipped vehicle (cameras, radar, LiDAR) under controlled daylight-clear and daylight-rain scenarios, with precise ground-truth distances to the target objects. Statistical analysis reveals the presence of change points in the variance of detection confidence score with distance. By averaging the PCD values across a range of detection quality thresholds and probabilistic thresholds, we compute the mean PCD (mPCD), which captures the overall perception characteristics of a system with respect to detection distance. Applying state-of-the-art perception models shows that mPCD captures meaningful reliability differences under varying weather conditions -- differences that static metrics overlook. PCD provides a principled, distribution-aware measure of perception performance, supporting safer and more robust ADS operation, while the SensorRainFall dataset offers a valuable benchmark for evaluation. The SensorRainFall dataset is publicly available at https://www.kaggle.com/datasets/datadrivenwheels/sensorrainfall, and the evaluation code is open-sourced at https://github.com/datadrivenwheels/PCD_Python.
Via
