With the increasing availability of aerial and satellite imagery, deep learning presents significant potential for transportation asset management, safety analysis, and urban planning. This study introduces CrosswalkNet, a robust and efficient deep learning framework designed to detect various types of pedestrian crosswalks from 15-cm resolution aerial images. CrosswalkNet incorporates a novel detection approach that improves upon traditional object detection strategies by utilizing oriented bounding boxes (OBB), enhancing detection precision by accurately capturing crosswalks regardless of their orientation. Several optimization techniques, including Convolutional Block Attention, a dual-branch Spatial Pyramid Pooling-Fast module, and cosine annealing, are implemented to maximize performance and efficiency. A comprehensive dataset comprising over 23,000 annotated crosswalk instances is utilized to train and validate the proposed framework. The best-performing model achieves an impressive precision of 96.5% and a recall of 93.3% on aerial imagery from Massachusetts, demonstrating its accuracy and effectiveness. CrosswalkNet has also been successfully applied to datasets from New Hampshire, Virginia, and Maine without transfer learning or fine-tuning, showcasing its robustness and strong generalization capability. Additionally, the crosswalk detection results, processed using High-Performance Computing (HPC) platforms and provided in polygon shapefile format, have been shown to accelerate data processing and detection, supporting real-time analysis for safety and mobility applications. This integration offers policymakers, transportation engineers, and urban planners an effective instrument to enhance pedestrian safety and improve urban mobility.