Abstract:Annotated datasets are critical for training neural networks for object detection, yet their manual creation is time- and labour-intensive, subjective to human error, and often limited in diversity. This challenge is particularly pronounced in the domain of robotics, where diverse and dynamic scenarios further complicate the creation of representative datasets. To address this, we propose a novel method for automatically generating annotated synthetic data in Unreal Engine. Our approach leverages photorealistic 3D Gaussian splats for rapid synthetic data generation. We demonstrate that synthetic datasets can achieve performance comparable to that of real-world datasets while significantly reducing the time required to generate and annotate data. Additionally, combining real-world and synthetic data significantly increases object detection performance by leveraging the quality of real-world images with the easier scalability of synthetic data. To our knowledge, this is the first application of synthetic data for training object detection algorithms in the highly dynamic and varied environment of robot soccer. Validation experiments reveal that a detector trained on synthetic images performs on par with one trained on manually annotated real-world images when tested on robot soccer match scenarios. Our method offers a scalable and comprehensive alternative to traditional dataset creation, eliminating the labour-intensive error-prone manual annotation process. By generating datasets in a simulator where all elements are intrinsically known, we ensure accurate annotations while significantly reducing manual effort, which makes it particularly valuable for robotics applications requiring diverse and scalable training data.
Abstract:This paper presents a framework for multi-agent navigation in structured but dynamic environments, integrating three key components: a shared semantic map encoding metric and semantic environmental knowledge, a claim policy for coordinating access to areas within the environment, and a Model Predictive Controller for generating motion trajectories that respect environmental and coordination constraints. The main advantages of this approach include: (i) enforcing area occupancy constraints derived from specific task requirements; (ii) enhancing computational scalability by eliminating the need for collision avoidance constraints between robotic agents; and (iii) the ability to anticipate and avoid deadlocks between agents. The paper includes both simulations and physical experiments demonstrating the framework's effectiveness in various representative scenarios.
Abstract:With the increase in the availability of Building Information Models (BIM) and (semi-) automatic tools to generate BIM from point clouds, we propose a world model architecture and algorithms to allow the use of the semantic and geometric knowledge encoded within these models to generate maps for robot localization and navigation. When heterogeneous robots are deployed within an environment, maps obtained from classical SLAM approaches might not be shared between all agents within a team of robots, e.g. due to a mismatch in sensor type, or a difference in physical robot dimensions. Our approach extracts the 3D geometry and semantic description of building elements (e.g. material, element type, color) from BIM, and represents this knowledge in a graph. Based on queries on the graph and knowledge of the skills of the robot, we can generate skill-specific maps that can be used during the execution of localization or navigation tasks. The approach is validated with data from complex build environments and integrated into existing navigation frameworks.