Abstract:The reliability of Large Language Models (LLMs) in high-stakes domains such as healthcare, law, and scientific discovery is often compromised by hallucinations. These failures typically stem from two sources: data-driven hallucinations and reasoning-driven hallucinations. However, existing detection methods usually address only one source and rely on task-specific heuristics, limiting their generalization to complex scenarios. To overcome these limitations, we introduce the Hallucination Risk Bound, a unified theoretical framework that formally decomposes hallucination risk into data-driven and reasoning-driven components, linked respectively to training-time mismatches and inference-time instabilities. This provides a principled foundation for analyzing how hallucinations emerge and evolve. Building on this foundation, we introduce HalluGuard, an NTK-based score that leverages the induced geometry and captured representations of the NTK to jointly identify data-driven and reasoning-driven hallucinations. We evaluate HalluGuard on 10 diverse benchmarks, 11 competitive baselines, and 9 popular LLM backbones, consistently achieving state-of-the-art performance in detecting diverse forms of LLM hallucinations.




Abstract:Large Language Models (LLMs) have demonstrated remarkable performance in code intelligence tasks such as code generation, summarization, and translation. However, their reliance on linearized token sequences limits their ability to understand the structural semantics of programs. While prior studies have explored graphaugmented prompting and structure-aware pretraining, they either suffer from prompt length constraints or require task-specific architectural changes that are incompatible with large-scale instructionfollowing LLMs. To address these limitations, this paper proposes CGBridge, a novel plug-and-play method that enhances LLMs with Code Graph information through an external, trainable Bridge module. CGBridge first pre-trains a code graph encoder via selfsupervised learning on a large-scale dataset of 270K code graphs to learn structural code semantics. It then trains an external module to bridge the modality gap among code, graph, and text by aligning their semantics through cross-modal attention mechanisms. Finally, the bridge module generates structure-informed prompts, which are injected into a frozen LLM, and is fine-tuned for downstream code intelligence tasks. Experiments show that CGBridge achieves notable improvements over both the original model and the graphaugmented prompting method. Specifically, it yields a 16.19% and 9.12% relative gain in LLM-as-a-Judge on code summarization, and a 9.84% and 38.87% relative gain in Execution Accuracy on code translation. Moreover, CGBridge achieves over 4x faster inference than LoRA-tuned models, demonstrating both effectiveness and efficiency in structure-aware code understanding.
Abstract:Machine unlearning, which selectively removes harmful knowledge from a pre-trained model without retraining from scratch, is crucial for addressing privacy, regulatory compliance, and ethical concerns in Large Language Models (LLMs). However, existing unlearning methods often struggle to thoroughly remove harmful knowledge, leaving residual harmful knowledge that can be easily recovered. To address these limitations, we propose Knowledge Density-Guided Unlearning via Blocks Reinsertion (KUnBR), a novel approach that first identifies layers with rich harmful knowledge and then thoroughly eliminates the harmful knowledge via re-insertion strategy. Our method introduces knowledge density estimation to quantify and locate layers containing the most harmful knowledge, enabling precise unlearning. Additionally, we design a layer re-insertion strategy that extracts and re-inserts harmful knowledge-rich layers into the original LLM, bypassing gradient obstruction caused by cover layers and ensuring effective gradient propagation during unlearning. Extensive experiments conducted on several unlearning and general capability benchmarks demonstrate that KUnBR achieves state-of-the-art forgetting performance while maintaining model utility.




Abstract:The performance of perception systems in autonomous driving systems (ADS) is strongly influenced by object distance, scene dynamics, and environmental conditions such as weather. AI-based perception outputs are inherently stochastic, with variability driven by these external factors, while traditional evaluation metrics remain static and event-independent, failing to capture fluctuations in confidence over time. In this work, we introduce the Perception Characteristics Distance (PCD) -- a novel evaluation metric that quantifies the farthest distance at which an object can be reliably detected, incorporating uncertainty in model outputs. To support this, we present the SensorRainFall dataset, collected on the Virginia Smart Road using a sensor-equipped vehicle (cameras, radar, LiDAR) under controlled daylight-clear and daylight-rain scenarios, with precise ground-truth distances to the target objects. Statistical analysis reveals the presence of change points in the variance of detection confidence score with distance. By averaging the PCD values across a range of detection quality thresholds and probabilistic thresholds, we compute the mean PCD (mPCD), which captures the overall perception characteristics of a system with respect to detection distance. Applying state-of-the-art perception models shows that mPCD captures meaningful reliability differences under varying weather conditions -- differences that static metrics overlook. PCD provides a principled, distribution-aware measure of perception performance, supporting safer and more robust ADS operation, while the SensorRainFall dataset offers a valuable benchmark for evaluation. The SensorRainFall dataset is publicly available at https://www.kaggle.com/datasets/datadrivenwheels/sensorrainfall, and the evaluation code is open-sourced at https://github.com/datadrivenwheels/PCD_Python.
Abstract:Non-overlapping Cross-domain Sequential Recommendation (NCSR) is the task that focuses on domain knowledge transfer without overlapping entities. Compared with traditional Cross-domain Sequential Recommendation (CSR), NCSR poses several challenges: 1) NCSR methods often rely on explicit item IDs, overlooking semantic information among entities. 2) Existing CSR mainly relies on domain alignment for knowledge transfer, risking semantic loss during alignment. 3) Most previous studies do not consider the many-to-one characteristic, which is challenging because of the utilization of multiple source domains. Given the above challenges, we introduce the prompt learning technique for Many-to-one Non-overlapping Cross-domain Sequential Recommendation (MNCSR) and propose a Text-enhanced Co-attention Prompt Learning Paradigm (TCPLP). Specifically, we capture semantic meanings by representing items through text rather than IDs, leveraging natural language universality to facilitate cross-domain knowledge transfer. Unlike prior works that need to conduct domain alignment, we directly learn transferable domain information, where two types of prompts, i.e., domain-shared and domain-specific prompts, are devised, with a co-attention-based network for prompt encoding. Then, we develop a two-stage learning strategy, i.e., pre-train & prompt-tuning paradigm, for domain knowledge pre-learning and transferring, respectively. We conduct extensive experiments on three datasets and the experimental results demonstrate the superiority of our TCPLP. Our source codes have been publicly released.
Abstract:The surge in digitized text data requires reliable inferential methods on observed textual patterns. This article proposes a novel two-sample text test for comparing similarity between two groups of documents. The hypothesis is whether the probabilistic mapping generating the textual data is identical across two groups of documents. The proposed test aims to assess text similarity by comparing the entropy of the documents. Entropy is estimated using neural network-based language models. The test statistic is derived from an estimation-and-inference framework, where the entropy is first approximated using an estimation set, followed by inference on the remaining data set. We showed theoretically that under mild conditions, the test statistic asymptotically follows a normal distribution. A multiple data-splitting strategy is proposed to enhance test power, which combines p-values into a unified decision. Various simulation studies and a real data example demonstrated that the proposed two-sample text test maintains the nominal Type one error rate while offering greater power compared to existing methods. The proposed method provides a novel solution to assert differences in document classes, particularly in fields where large-scale textual information is crucial.
Abstract:Driving-related safety-critical events (SCEs), including crashes and near-crashes, provide essential insights for the development and safety evaluation of automated driving systems. However, two major challenges limit their accessibility: the rarity of SCEs and the presence of sensitive privacy information in the data. The Second Strategic Highway Research Program (SHRP 2) Naturalistic Driving Study (NDS), the largest NDS to date, collected millions of hours of multimodal, high-resolution, high-frequency driving data from thousands of participants, capturing thousands of SCEs. While this dataset is invaluable for safety research, privacy concerns and data use restrictions significantly limit public access to the raw data. To address these challenges, we introduce SynSHRP2, a publicly available, synthetic, multimodal driving dataset containing over 1874 crashes and 6924 near-crashes derived from the SHRP 2 NDS. The dataset features de-identified keyframes generated using Stable Diffusion and ControlNet, ensuring the preservation of critical safety-related information while eliminating personally identifiable data. Additionally, SynSHRP2 includes detailed annotations on SCE type, environmental and traffic conditions, and time-series kinematic data spanning 5 seconds before and during each event. Synchronized keyframes and narrative descriptions further enhance its usability. This paper presents two benchmarks for event attribute classification and scene understanding, demonstrating the potential applications of SynSHRP2 in advancing safety research and automated driving system development.
Abstract:Vision Large Language Models (VLLMs) have demonstrated impressive capabilities in general visual tasks such as image captioning and visual question answering. However, their effectiveness in specialized, safety-critical domains like autonomous driving remains largely unexplored. Autonomous driving systems require sophisticated scene understanding in complex environments, yet existing multimodal benchmarks primarily focus on normal driving conditions, failing to adequately assess VLLMs' performance in safety-critical scenarios. To address this, we introduce DVBench, a pioneering benchmark designed to evaluate the performance of VLLMs in understanding safety-critical driving videos. Built around a hierarchical ability taxonomy that aligns with widely adopted frameworks for describing driving scenarios used in assessing highly automated driving systems, DVBench features 10,000 multiple-choice questions with human-annotated ground-truth answers, enabling a comprehensive evaluation of VLLMs' capabilities in perception and reasoning. Experiments on 14 SOTA VLLMs, ranging from 0.5B to 72B parameters, reveal significant performance gaps, with no model achieving over 40% accuracy, highlighting critical limitations in understanding complex driving scenarios. To probe adaptability, we fine-tuned selected models using domain-specific data from DVBench, achieving accuracy gains ranging from 5.24 to 10.94 percentage points, with relative improvements of up to 43.59%. This improvement underscores the necessity of targeted adaptation to bridge the gap between general-purpose VLLMs and mission-critical driving applications. DVBench establishes an essential evaluation framework and research roadmap for developing VLLMs that meet the safety and robustness requirements for real-world autonomous systems. We released the benchmark toolbox and the fine-tuned model at: https://github.com/tong-zeng/DVBench.git.
Abstract:Accurately identifying, understanding, and describing driving safety-critical events (SCEs), including crashes and near-crashes, is crucial for traffic safety, automated driving systems, and advanced driver assistance systems research and application. As SCEs are rare events, most general Vision-Language Models (VLMs) have not been trained sufficiently to link SCE videos and narratives, which could lead to hallucination and missing key safety characteristics. To tackle these challenges, we propose ScVLM, a hybrid approach that combines supervised learning and contrastive learning to improve driving video understanding and event description rationality for VLMs. The proposed approach is trained on and evaluated by more than 8,600 SCEs from the Second Strategic Highway Research Program Naturalistic Driving Study dataset, the largest publicly accessible driving dataset with videos and SCE annotations. The results demonstrate the superiority of the proposed approach in generating contextually accurate event descriptions and mitigate hallucinations from VLMs.




Abstract:Deep learning based blind watermarking works have gradually emerged and achieved impressive performance. However, previous deep watermarking studies mainly focus on fixed low-resolution images while paying less attention to arbitrary resolution images, especially widespread high-resolution images nowadays. Moreover, most works usually demonstrate robustness against typical non-geometric attacks (\textit{e.g.}, JPEG compression) but ignore common geometric attacks (\textit{e.g.}, Rotate) and more challenging combined attacks. To overcome the above limitations, we propose a practical deep \textbf{D}ispersed \textbf{W}atermarking with \textbf{S}ynchronization and \textbf{F}usion, called \textbf{\proposed}. Specifically, given an arbitrary-resolution cover image, we adopt a dispersed embedding scheme which sparsely and randomly selects several fixed small-size cover blocks to embed a consistent watermark message by a well-trained encoder. In the extraction stage, we first design a watermark synchronization module to locate and rectify the encoded blocks in the noised watermarked image. We then utilize a decoder to obtain messages embedded in these blocks, and propose a message fusion strategy based on similarity to make full use of the consistency among messages, thus determining a reliable message. Extensive experiments conducted on different datasets convincingly demonstrate the effectiveness of our proposed {\proposed}. Compared with state-of-the-art approaches, our blind watermarking can achieve better performance: averagely improve the bit accuracy by 5.28\% and 5.93\% against single and combined attacks, respectively, and show less file size increment and better visual quality. Our code is available at https://github.com/bytedance/DWSF.