What is Topic Modeling? Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Papers and Code
Aug 25, 2025
Abstract:Benchmarks shape progress in AI research. A useful benchmark should be both difficult and realistic: questions should challenge frontier models while also reflecting real-world usage. Yet, current paradigms face a difficulty-realism tension: exam-style benchmarks are often made artificially difficult with limited real-world value, while benchmarks based on real user interaction often skew toward easy, high-frequency problems. In this work, we explore a radically different paradigm: assessing models on unsolved questions. Rather than a static benchmark scored once, we curate unsolved questions and evaluate models asynchronously over time with validator-assisted screening and community verification. We introduce UQ, a testbed of 500 challenging, diverse questions sourced from Stack Exchange, spanning topics from CS theory and math to sci-fi and history, probing capabilities including reasoning, factuality, and browsing. UQ is difficult and realistic by construction: unsolved questions are often hard and naturally arise when humans seek answers, thus solving them yields direct real-world value. Our contributions are threefold: (1) UQ-Dataset and its collection pipeline combining rule-based filters, LLM judges, and human review to ensure question quality (e.g., well-defined and difficult); (2) UQ-Validators, compound validation strategies that leverage the generator-validator gap to provide evaluation signals and pre-screen candidate solutions for human review; and (3) UQ-Platform, an open platform where experts collectively verify questions and solutions. The top model passes UQ-validation on only 15% of questions, and preliminary human verification has already identified correct answers among those that passed. UQ charts a path for evaluating frontier models on real-world, open-ended challenges, where success pushes the frontier of human knowledge. We release UQ at https://uq.stanford.edu.
* FN, KZL, and NM are project co-leads and contributed equally. Project
website: https://uq.stanford.edu
Via

Aug 25, 2025
Abstract:Traditional dialogue retrieval aims to select the most appropriate utterance or image from recent dialogue history. However, they often fail to meet users' actual needs for revisiting semantically coherent content scattered across long-form conversations. To fill this gap, we define the Fine-grained Fragment Retrieval (FFR) task, requiring models to locate query-relevant fragments, comprising both utterances and images, from multimodal long-form dialogues. As a foundation for FFR, we construct MLDR, the longest-turn multimodal dialogue retrieval dataset to date, averaging 25.45 turns per dialogue, with each naturally spanning three distinct topics. To evaluate generalization in real-world scenarios, we curate and annotate a WeChat-based test set comprising real-world multimodal dialogues with an average of 75.38 turns. Building on these resources, we explore existing generation-based Vision-Language Models (VLMs) on FFR and observe that they often retrieve incoherent utterance-image fragments. While optimized for generating responses from visual-textual inputs, these models lack explicit supervision to ensure semantic coherence within retrieved fragments. To this end, we propose F2RVLM, a generative retrieval model trained in a two-stage paradigm: (1) supervised fine-tuning to inject fragment-level retrieval knowledge, and (2) GRPO-based reinforcement learning with multi-objective rewards promoting semantic precision, relevance, and contextual coherence. To handle varying intra-fragment complexity, from locally dense to sparsely distributed, we introduce difficulty-aware curriculum sampling that ranks training instances by model-predicted difficulty and gradually exposes the model to harder samples. This boosts reasoning ability in long, multi-turn contexts. F2RVLM outperforms popular VLMs in both in-domain and real-domain settings, demonstrating superior retrieval performance.
Via

Aug 24, 2025
Abstract:Recent advancements in large vision-language models (VLMs) have primarily focused on English, with limited attention given to other languages. To address this gap, we introduce MEENA (also known as PersianMMMU), the first dataset designed to evaluate Persian VLMs across scientific, reasoning, and human-level understanding tasks. Our dataset comprises approximately 7,500 Persian and 3,000 English questions, covering a wide range of topics such as reasoning, mathematics, physics, diagrams, charts, and Persian art and literature. Key features of MEENA include: (1) diverse subject coverage spanning various educational levels, from primary to upper secondary school, (2) rich metadata, including difficulty levels and descriptive answers, (3) original Persian data that preserves cultural nuances, (4) a bilingual structure to assess cross-linguistic performance, and (5) a series of diverse experiments assessing various capabilities, including overall performance, the model's ability to attend to images, and its tendency to generate hallucinations. We hope this benchmark contributes to enhancing VLM capabilities beyond English.
Via

Aug 25, 2025
Abstract:Synthetic transcript generation is critical in contact center domains, where privacy and data scarcity limit model training and evaluation. Unlike prior synthetic dialogue generation work on open-domain or medical dialogues, contact center conversations are goal-oriented, role-asymmetric, and behaviorally complex, featuring disfluencies, ASR noise, and compliance-driven agent actions. In deployments where transcripts are unavailable, standard pipelines still yield derived call attributes such as Intent Summaries, Topic Flow, and QA Evaluation Forms. We leverage these as supervision signals to guide generation. To assess the quality of such outputs, we introduce a diagnostic framework of 18 linguistically and behaviorally grounded metrics for comparing real and synthetic transcripts. We benchmark four language-agnostic generation strategies, from simple prompting to characteristic-aware multi-stage approaches, alongside reference-free baselines. Results reveal persistent challenges: no method excels across all traits, with notable deficits in disfluency, sentiment, and behavioral realism. Our diagnostic tool exposes these gaps, enabling fine-grained evaluation and stress testing of synthetic dialogue across languages.
Via

Aug 11, 2025
Abstract:With massive texts on social media, users and analysts often rely on topic modeling techniques to quickly extract key themes and gain insights. Traditional topic modeling techniques, such as Latent Dirichlet Allocation (LDA), provide valuable insights but are computationally expensive, making them impractical for real-time data analysis. Although recent advances in distributed training and fast sampling methods have improved efficiency, real-time topic exploration remains a significant challenge. In this paper, we present MLego, an interactive query framework designed to support real-time topic modeling analysis by leveraging model materialization and reuse. Instead of retraining models from scratch, MLego efficiently merges materialized topic models to construct approximate results at interactive speeds. To further enhance efficiency, we introduce a hierarchical plan search strategy for single queries and an optimized query reordering technique for batch queries. We integrate MLego into a visual analytics prototype system, enabling users to explore large-scale textual datasets through interactive queries. Extensive experiments demonstrate that MLego significantly reduces computation costs while maintaining high-quality topic modeling results. MLego enhances existing visual analytics approaches, which primarily focus on user-driven topic modeling, by enabling real-time, query-driven exploration. This complements traditional methods and bridges the gap between scalable topic modeling and interactive data analysis.
* 14 pages
Via

Aug 26, 2025
Abstract:Retrieval-augmented generation (RAG) systems improve large language model outputs by incorporating external knowledge, enabling more informed and context-aware responses. However, the effectiveness and trustworthiness of these systems critically depends on how they are evaluated, particularly on whether the evaluation process captures real-world constraints like protecting sensitive information. While current evaluation efforts for RAG systems have primarily focused on the development of performance metrics, far less attention has been given to the design and quality of the underlying evaluation datasets, despite their pivotal role in enabling meaningful, reliable assessments. In this work, we introduce a novel multi-agent framework for generating synthetic QA datasets for RAG evaluation that prioritize semantic diversity and privacy preservation. Our approach involves: (1) a Diversity agent leveraging clustering techniques to maximize topical coverage and semantic variability, (2) a Privacy Agent that detects and mask sensitive information across multiple domains and (3) a QA curation agent that synthesizes private and diverse QA pairs suitable as ground truth for RAG evaluation. Extensive experiments demonstrate that our evaluation sets outperform baseline methods in diversity and achieve robust privacy masking on domain-specific datasets. This work offers a practical and ethically aligned pathway toward safer, more comprehensive RAG system evaluation, laying the foundation for future enhancements aligned with evolving AI regulations and compliance standards.
* ECAI 2025 TRUST AI workshop
Via

Aug 26, 2025
Abstract:Estimating emotional states from physiological signals is a central topic in affective computing and psychophysiology. While many emotion estimation systems implicitly assume a stable relationship between physiological features and subjective affect, this assumption has rarely been tested over long timeframes. This study investigates whether such relationships remain consistent across several months within individuals. We developed a custom measurement system and constructed a longitudinal dataset by collecting physiological signals -- including blood volume pulse, electrodermal activity (EDA), skin temperature, and acceleration--along with self-reported emotional states from 24 participants over two three-month periods. Data were collected in naturalistic working environments, allowing analysis of the relationship between physiological features and subjective arousal in everyday contexts. We examined how physiological-arousal relationships evolve over time by using Explainable Boosting Machines (EBMs) to ensure model interpretability. A model trained on 1st-period data showed a 5\% decrease in accuracy when tested on 2nd-period data, indicating long-term variability in physiological-arousal associations. EBM-based comparisons further revealed that while heart rate remained a relatively stable predictor, minimum EDA exhibited substantial individual-level fluctuations between periods. While the number of participants is limited, these findings highlight the need to account for temporal variability in physiological-arousal relationships and suggest that emotion estimation models should be periodically updated -- e.g., every five months -- based on observed shift trends to maintain robust performance over time.
* 9 pages, 5 figures, accepted at 13th International Conference on
Affective Computing and Intelligent Interaction (ACII 2025)
Via

Aug 10, 2025
Abstract:Given recent breakthroughs in Generative Artificial Intelligence (GAI) and Large Language Models (LLMs), more and more professional services are being augmented through Artificial Intelligence (AI), which once seemed impossible to automate. This paper presents a modular model for leveraging GAI in developing strategic plans for large scale government organizations and evaluates leading machine learning techniques in their application towards one of the identified modules. Specifically, the performance of BERTopic and Non-negative Matrix Factorization (NMF) are evaluated in their ability to use topic modeling to generate themes representative of Vision Elements within a strategic plan. To accomplish this, BERTopic and NMF models are trained using a large volume of reports from the Government Accountability Office (GAO). The generated topics from each model are then scored for similarity against the Vision Elements of a published strategic plan and the results are compared. Our results show that these techniques are capable of generating themes similar to 100% of the elements being evaluated against. Further, we conclude that BERTopic performs best in this application with more than half of its correlated topics achieving a "medium" or "strong" correlation. A capability of GAI-enabled strategic plan development impacts a multi-billion dollar industry and assists the federal government in overcoming regulatory requirements which are crucial to the public good. Further work will focus on the operationalization of the concept proven in this study as well as viability of the remaining modules in the proposed model for GAI-generated strategic plans.
* 11 pages, 9 figures
Via

Aug 11, 2025
Abstract:Word clouds are a common way to summarize qualitative interviews, yet traditional frequency-based methods often fail in conversational contexts: they surface filler words, ignore paraphrase, and fragment semantically related ideas. This limits their usefulness in early-stage analysis, when researchers need fast, interpretable overviews of what participant actually said. We introduce ThemeClouds, an open-source visualization tool that uses large language models (LLMs) to generate thematic, participant-weighted word clouds from dialogue transcripts. The system prompts an LLM to identify concept-level themes across a corpus and then counts how many unique participants mention each topic, yielding a visualization grounded in breadth of mention rather than raw term frequency. Researchers can customize prompts and visualization parameters, providing transparency and control. Using interviews from a user study comparing five recording-device configurations (31 participants; 155 transcripts, Whisper ASR), our approach surfaces more actionable device concerns than frequency clouds and topic-modeling baselines (e.g., LDA, BERTopic). We discuss design trade-offs for integrating LLM assistance into qualitative workflows, implications for interpretability and researcher agency, and opportunities for interactive analyses such as per-condition contrasts (``diff clouds'').
Via

Aug 11, 2025
Abstract:Digital Humanities (DH) is an interdisciplinary field that integrates computational methods with humanities scholarship to investigate innovative topics. Each academic discipline follows a unique developmental path shaped by the topics researchers investigate and the methods they employ. With the help of bibliometric analysis, most of previous studies have examined DH across multiple dimensions such as research hotspots, co-author networks, and institutional rankings. However, these studies have often been limited in their ability to provide deep insights into the current state of technological advancements and topic development in DH. As a result, their conclusions tend to remain superficial or lack interpretability in understanding how methods and topics interrelate in the field. To address this gap, this study introduced a new concept of Topic-Method Composition (TMC), which refers to a hybrid knowledge structure generated by the co-occurrence of specific research topics and the corresponding method. Especially by analyzing the interaction between TMCs, we can see more clearly the intersection and integration of digital technology and humanistic subjects in DH. Moreover, this study developed a TMC-based workflow combining bibliometric analysis, topic modeling, and network analysis to analyze the development characteristics and patterns of research disciplines. By applying this workflow to large-scale bibliometric data, it enables a detailed view of the knowledge structures, providing a tool adaptable to other fields.
* Proceedings of 2025 Digital Humanities Conference
Via
