Abstract:Sequential recommendation models based on the Transformer architecture show superior performance in harnessing long-range dependencies within user behavior via self-attention. However, naively updating them on continuously arriving non-stationary data streams incurs prohibitive computation costs or leads to catastrophic forgetting. To address this, we propose Continual Sequential Transformer for Recommendation (CSTRec) that effectively leverages well-preserved historical user interests while capturing current interests. At its core is Continual Sequential Attention (CSA), a linear attention mechanism that retains past knowledge without direct access to old data. CSA integrates two key components: (1) Cauchy-Schwarz Normalization that stabilizes training under uneven interaction frequencies, and (2) Collaborative Interest Enrichment that mitigates forgetting through shared, learnable interest pools. We further introduce a technique that facilitates learning for cold-start users by transferring historical knowledge from behaviorally similar existing users. Extensive experiments on three real-world datasets indicate that CSTRec outperforms state-of-the-art baselines in both knowledge retention and acquisition.
Abstract:Scientific paper retrieval is essential for supporting literature discovery and research. While dense retrieval methods demonstrate effectiveness in general-purpose tasks, they often fail to capture fine-grained scientific concepts that are essential for accurate understanding of scientific queries. Recent studies also use large language models (LLMs) for query understanding; however, these methods often lack grounding in corpus-specific knowledge and may generate unreliable or unfaithful content. To overcome these limitations, we propose SemRank, an effective and efficient paper retrieval framework that combines LLM-guided query understanding with a concept-based semantic index. Each paper is indexed using multi-granular scientific concepts, including general research topics and detailed key phrases. At query time, an LLM identifies core concepts derived from the corpus to explicitly capture the query's information need. These identified concepts enable precise semantic matching, significantly enhancing retrieval accuracy. Experiments show that SemRank consistently improves the performance of various base retrievers, surpasses strong existing LLM-based baselines, and remains highly efficient.
Abstract:Scientific retrieval is essential for advancing academic discovery. Within this process, document reranking plays a critical role by refining first-stage retrieval results. However, large language model (LLM) listwise reranking faces unique challenges in the scientific domain. First-stage retrieval is often suboptimal in the scientific domain, so relevant documents are ranked lower. Moreover, conventional listwise reranking uses the full text of candidate documents in the context window, limiting the number of candidates that can be considered. As a result, many relevant documents are excluded before reranking, which constrains overall retrieval performance. To address these challenges, we explore compact document representations based on semantic features such as categories, sections, and keywords, and propose a training-free, model-agnostic reranking framework for scientific retrieval called CoRank. The framework involves three stages: (i) offline extraction of document-level features, (ii) coarse reranking using these compact representations, and (iii) fine-grained reranking on full texts of the top candidates from stage (ii). This hybrid design provides a high-level abstraction of document semantics, expands candidate coverage, and retains critical details required for precise ranking. Experiments on LitSearch and CSFCube show that CoRank significantly improves reranking performance across different LLM backbones, increasing nDCG@10 from 32.0 to 39.7. Overall, these results highlight the value of information extraction for reranking in scientific retrieval.
Abstract:Existing dense retrieval models struggle with reasoning-intensive retrieval task as they fail to capture implicit relevance that requires reasoning beyond surface-level semantic information. To address these challenges, we propose Scenario-Profiled Indexing with Knowledge Expansion (SPIKE), a dense retrieval framework that explicitly indexes implicit relevance by decomposing documents into scenario-based retrieval units. SPIKE organizes documents into scenario, which encapsulates the reasoning process necessary to uncover implicit relationships between hypothetical information needs and document content. SPIKE constructs a scenario-augmented dataset using a powerful teacher large language model (LLM), then distills these reasoning capabilities into a smaller, efficient scenario generator. During inference, SPIKE incorporates scenario-level relevance alongside document-level relevance, enabling reasoning-aware retrieval. Extensive experiments demonstrate that SPIKE consistently enhances retrieval performance across various query types and dense retrievers. It also enhances the retrieval experience for users through scenario and offers valuable contextual information for LLMs in retrieval-augmented generation (RAG).
Abstract:Despite the widespread adoption of large language models (LLMs) for recommendation, we demonstrate that LLMs often exhibit uncertainty in their recommendations. To ensure the trustworthy use of LLMs in generating recommendations, we emphasize the importance of assessing the reliability of recommendations generated by LLMs. We start by introducing a novel framework for estimating the predictive uncertainty to quantitatively measure the reliability of LLM-based recommendations. We further propose to decompose the predictive uncertainty into recommendation uncertainty and prompt uncertainty, enabling in-depth analyses of the primary source of uncertainty. Through extensive experiments, we (1) demonstrate predictive uncertainty effectively indicates the reliability of LLM-based recommendations, (2) investigate the origins of uncertainty with decomposed uncertainty measures, and (3) propose uncertainty-aware prompting for a lower predictive uncertainty and enhanced recommendation. Our source code and model weights are available at https://github.com/WonbinKweon/UNC_LLM_REC_WWW2025
Abstract:Generative retrieval has recently emerged as a new alternative of traditional information retrieval approaches. However, existing generative retrieval methods directly decode docid when a query is given, making it impossible to provide users with explanations as an answer for "Why this document is retrieved?". To address this limitation, we propose Hierarchical Category Path-Enhanced Generative Retrieval(HyPE), which enhances explainability by generating hierarchical category paths step-by-step before decoding docid. HyPE leverages hierarchical category paths as explanation, progressing from broad to specific semantic categories. This approach enables diverse explanations for the same document depending on the query by using shared category paths between the query and the document, and provides reasonable explanation by reflecting the document's semantic structure through a coarse-to-fine manner. HyPE constructs category paths with external high-quality semantic hierarchy, leverages LLM to select appropriate candidate paths for each document, and optimizes the generative retrieval model with path-augmented dataset. During inference, HyPE utilizes path-aware reranking strategy to aggregate diverse topic information, allowing the most relevant documents to be prioritized in the final ranked list of docids. Our extensive experiments demonstrate that HyPE not only offers a high level of explainability but also improves the retrieval performance in the document retrieval task.
Abstract:Academic paper search is an essential task for efficient literature discovery and scientific advancement. While dense retrieval has advanced various ad-hoc searches, it often struggles to match the underlying academic concepts between queries and documents, which is critical for paper search. To enable effective academic concept matching for paper search, we propose Taxonomy-guided Semantic Indexing (TaxoIndex) framework. TaxoIndex extracts key concepts from papers and organizes them as a semantic index guided by an academic taxonomy, and then leverages this index as foundational knowledge to identify academic concepts and link queries and documents. As a plug-and-play framework, TaxoIndex can be flexibly employed to enhance existing dense retrievers. Extensive experiments show that TaxoIndex brings significant improvements, even with highly limited training data, and greatly enhances interpretability.
Abstract:Recent advancements in Large Language Models (LLMs) have demonstrated exceptional performance across a wide range of tasks, generating significant interest in their application to recommendation systems. However, existing methods have not fully capitalized on the potential of LLMs, often constrained by limited input information or failing to fully utilize their advanced reasoning capabilities. To address these limitations, we introduce EXP3RT, a novel LLM-based recommender designed to leverage rich preference information contained in user and item reviews. EXP3RT is basically fine-tuned through distillation from a teacher LLM to perform three key tasks in order: EXP3RT first extracts and encapsulates essential subjective preferences from raw reviews, aggregates and summarizes them according to specific criteria to create user and item profiles. It then generates detailed step-by-step reasoning followed by predicted rating, i.e., reasoning-enhanced rating prediction, by considering both subjective and objective information from user/item profiles and item descriptions. This personalized preference reasoning from EXP3RT enhances rating prediction accuracy and also provides faithful and reasonable explanations for recommendation. Extensive experiments show that EXP3RT outperforms existing methods on both rating prediction and candidate item reranking for top-k recommendation, while significantly enhancing the explainability of recommendation systems.
Abstract:Cross-lingual entity alignment (EA) enables the integration of multiple knowledge graphs (KGs) across different languages, providing users with seamless access to diverse and comprehensive knowledge.Existing methods, mostly supervised, face challenges in obtaining labeled entity pairs. To address this, recent studies have shifted towards a self-supervised and unsupervised frameworks. Despite their effectiveness, these approaches have limitations: (1) they mainly focus on entity features, neglecting the semantic information of relations, (2) they assume isomorphism between source and target graphs, leading to noise and reduced alignment accuracy, and (3) they are susceptible to noise in the textual features, especially when encountering inconsistent translations or Out-Of-Vocabulary (OOV) problems. In this paper, we propose ERAlign, an unsupervised and robust cross-lingual EA framework that jointly performs Entity-level and Relation-level Alignment using semantic textual features of relations and entities. Its refinement process iteratively enhances results by fusing entity-level and relation-level alignments based on neighbor triple matching. The additional verification process examines the entities' neighbor triples as the linearized text. This \textit{Align-and-Verify} pipeline that rigorously assesses alignment results, achieving near-perfect alignment even in the presence of noisy textual features of entities. Our extensive experiments demonstrate that robustness and general applicability of \proposed improved the accuracy and effectiveness of EA tasks, contributing significantly to knowledge-oriented applications.
Abstract:Despite its breakthrough in classification problems, Knowledge distillation (KD) to recommendation models and ranking problems has not been studied well in the previous literature. This dissertation is devoted to developing knowledge distillation methods for recommender systems to fully improve the performance of a compact model. We propose novel distillation methods designed for recommender systems. The proposed methods are categorized according to their knowledge sources as follows: (1) Latent knowledge: we propose two methods that transfer latent knowledge of user/item representation. They effectively transfer knowledge of niche tastes with a balanced distillation strategy that prevents the KD process from being biased towards a small number of large preference groups. Also, we propose a new method that transfers user/item relations in the representation space. The proposed method selectively transfers essential relations considering the limited capacity of the compact model. (2) Ranking knowledge: we propose three methods that transfer ranking knowledge from the recommendation results. They formulate the KD process as a ranking matching problem and transfer the knowledge via a listwise learning strategy. Further, we present a new learning framework that compresses the ranking knowledge of heterogeneous recommendation models. The proposed framework is developed to ease the computational burdens of model ensemble which is a dominant solution for many recommendation applications. We validate the benefit of our proposed methods and frameworks through extensive experiments. To summarize, this dissertation sheds light on knowledge distillation approaches for a better accuracy-efficiency trade-off of the recommendation models.