Image reconstruction in X-ray tomography is an ill-posed inverse problem, particularly with limited available data. Regularization is thus essential, but its effectiveness hinges on the choice of a regularization parameter that balances data fidelity against a priori information. We present a novel method for automatic parameter selection based on the use of two distinct computational discretizations of the same problem. A feedback control algorithm dynamically adjusts the regularization strength, driving an iterative reconstruction toward the smallest parameter that yields sufficient similarity between reconstructions on the two grids. The effectiveness of the proposed approach is demonstrated using real tomographic data.
The rapid advancement of Large Vision Language Models (LVLMs) has demonstrated excellent abilities in various visual tasks. Building upon these developments, the thinking with images paradigm has emerged, enabling models to dynamically edit and re-encode visual information at each reasoning step, mirroring human visual processing. However, this paradigm introduces significant challenges as diverse errors may occur during reasoning processes. This necessitates Process Reward Models (PRMs) for distinguishing positive and negative reasoning steps, yet existing benchmarks for PRMs are predominantly text-centric and lack comprehensive assessment under this paradigm. To address these gaps, this work introduces the first comprehensive benchmark specifically designed for evaluating PRMs under the thinking with images paradigm. Our main contributions are: (1) Through extensive analysis of reasoning trajectories and guided search experiments with PRMs, we define 7 fine-grained error types and demonstrate both the necessity for specialized PRMs and the potential for improvement. (2) We construct a comprehensive benchmark comprising 1,206 manually annotated thinking with images reasoning trajectories spanning 4 categories and 16 subcategories for fine-grained evaluation of PRMs. (3) Our experimental analysis reveals that current LVLMs fall short as effective PRMs, exhibiting limited capabilities in visual reasoning process evaluation with significant performance disparities across error types, positive evaluation bias, and sensitivity to reasoning step positions. These findings demonstrate the effectiveness of our benchmark and establish crucial foundations for advancing PRMs in LVLMs.
Aerial manipulation (AM) promises to move Unmanned Aerial Vehicles (UAVs) beyond passive inspection to contact-rich tasks such as grasping, assembly, and in-situ maintenance. Most prior AM demonstrations rely on external motion capture (MoCap) and emphasize position control for coarse interactions, limiting deployability. We present a fully onboard perception-control pipeline for contact-rich AM that achieves accurate motion tracking and regulated contact wrenches without MoCap. The main components are (1) an augmented visual-inertial odometry (VIO) estimator with contact-consistency factors that activate only during interaction, tightening uncertainty around the contact frame and reducing drift, and (2) image-based visual servoing (IBVS) to mitigate perception-control coupling, together with a hybrid force-motion controller that regulates contact wrenches and lateral motion for stable contact. Experiments show that our approach closes the perception-to-wrench loop using only onboard sensing, yielding an velocity estimation improvement of 66.01% at contact, reliable target approach, and stable force holding-pointing toward deployable, in-the-wild aerial manipulation.
Segment Anything Model 2 (SAM2) shows excellent performance in video object segmentation tasks; however, the heavy computational burden hinders its application in real-time video processing. Although there have been efforts to improve the efficiency of SAM2, most of them focus on retraining a lightweight backbone, with little exploration into post-training acceleration. In this paper, we observe that SAM2 exhibits sparse perception pattern as biological vision, which provides opportunities for eliminating redundant computation and acceleration: i) In mask decoder, the attention primarily focuses on the foreground objects, whereas the image encoder in the earlier stage exhibits a broad attention span, which results in unnecessary computation to background regions. ii) In memory bank, only a small subset of tokens in each frame contribute significantly to memory attention, and the salient regions exhibit temporal consistency, making full-token computation redundant. With these insights, we propose Efficient-SAM2, which promotes SAM2 to adaptively focus on object regions while eliminating task-irrelevant computations, thereby significantly improving inference efficiency. Specifically, for image encoder, we propose object-aware Sparse Window Routing (SWR), a window-level computation allocation mechanism that leverages the consistency and saliency cues from the previous-frame decoder to route background regions into a lightweight shortcut branch. Moreover, for memory attention, we propose object-aware Sparse Memory Retrieval (SMR), which allows only the salient memory tokens in each frame to participate in computation, with the saliency pattern reused from their first recollection. With negligible additional parameters and minimal training overhead, Efficient-SAM2 delivers 1.68x speedup on SAM2.1-L model with only 1.0% accuracy drop on SA-V test set.
Given a textual description, the task of referring expression comprehension (REC) involves the localisation of the referred object in an image. Multimodal large language models (MLLMs) have achieved high accuracy on REC benchmarks through scaling up the model size and training data. Moreover, the performance of MLLMs can be further improved using techniques such as Chain-of-Thought and tool use, which provides additional visual or textual context to the model. In this paper, we analyse the effect of various techniques for providing additional visual and textual context via tool use to the MLLM and its effect on the REC task. Furthermore, we propose a training-free framework named Chain-of-Caption to improve the REC performance of MLLMs. We perform experiments on RefCOCO/RefCOCOg/RefCOCO+ and Ref-L4 datasets and show that individual textual or visual context can improve the REC performance without any fine-tuning. By combining multiple contexts, our training-free framework shows between 5% to 30% performance gain over the baseline model on accuracy at various Intersection over Union (IoU) thresholds.
Open-vocabulary semantic segmentation has emerged as a promising research direction in remote sensing, enabling the recognition of diverse land-cover types beyond pre-defined category sets. However, existing methods predominantly rely on the passive mapping of visual features and textual embeddings. This ``appearance-based" paradigm lacks geospatial contextual awareness, leading to severe semantic ambiguity and misclassification when encountering land-cover classes with similar spectral features but distinct semantic attributes. To address this, we propose a Geospatial Reasoning Chain-of-Thought (GR-CoT) framework designed to enhance the scene understanding capabilities of Multimodal Large Language Models (MLLMs), thereby guiding open-vocabulary segmentation models toward precise mapping. The framework comprises two collaborative components: an offline knowledge distillation stream and an online instance reasoning stream. The offline stream establishes fine-grained category interpretation standards to resolve semantic conflicts between similar land-cover types. During online inference, the framework executes a sequential reasoning process involving macro-scenario anchoring, visual feature decoupling, and knowledge-driven decision synthesis. This process generates an image-adaptive vocabulary that guides downstream models to achieve pixel-level alignment with correct geographical semantics. Extensive experiments on the LoveDA and GID5 benchmarks demonstrate the superiority of our approach.
Recent advances in diffusion models have significantly improved image editing. However, challenges persist in handling geometric transformations, such as translation, rotation, and scaling, particularly in complex scenes. Existing approaches suffer from two main limitations: (1) difficulty in achieving accurate geometric editing of object translation, rotation, and scaling; (2) inadequate modeling of intricate lighting and shadow effects, leading to unrealistic results. To address these issues, we propose GeoEdit, a framework that leverages in-context generation through a diffusion transformer module, which integrates geometric transformations for precise object edits. Moreover, we introduce Effects-Sensitive Attention, which enhances the modeling of intricate lighting and shadow effects for improved realism. To further support training, we construct RS-Objects, a large-scale geometric editing dataset containing over 120,000 high-quality image pairs, enabling the model to learn precise geometric editing while generating realistic lighting and shadows. Extensive experiments on public benchmarks demonstrate that GeoEdit consistently outperforms state-of-the-art methods in terms of visual quality, geometric accuracy, and realism.
While multimodal large language models (MLLMs) have made substantial progress in single-image spatial reasoning, multi-image spatial reasoning, which requires integration of information from multiple viewpoints, remains challenging. Cognitive studies suggest that humans address such tasks through two mechanisms: cross-view correspondence, which identifies regions across different views that correspond to the same physical locations, and stepwise viewpoint transformation, which composes relative viewpoint changes sequentially. However, existing studies incorporate these mechanisms only partially and often implicitly, without explicit supervision for both. We propose Human-Aware Training for Cross-view correspondence and viewpoint cHange (HATCH), a training framework with two complementary objectives: (1) Patch-Level Spatial Alignment, which encourages patch representations to align across views for spatially corresponding regions, and (2) Action-then-Answer Reasoning, which requires the model to generate explicit viewpoint transition actions before predicting the final answer. Experiments on three benchmarks demonstrate that HATCH consistently outperforms baselines of comparable size by a clear margin and achieves competitive results against much larger models, while preserving single-image reasoning capabilities.
With the increasing integration of robots into daily life, human-robot interaction has become more complex and multifaceted. A critical component of this interaction is Interactive Visual Grounding (IVG), through which robots must interpret human intentions and resolve ambiguity. Existing IVG models generally lack a mechanism to determine when to ask clarification questions, as they implicitly rely on their learned representations. CLUE addresses this gap by converting the VLM's cross-modal attention into an explicit, spatially grounded signal for deciding when to ask. We extract text to image attention maps and pass them to a lightweight CNN to detect referential ambiguity, while a LoRA fine-tuned decoder conducts the dialog and emits grounding location tokens. We train on a real-world interactive dataset for IVG, and a mixed ambiguity set for the detector. With InViG-only supervision, our model surpasses a state-of-the-art method while using parameter-efficient fine-tuning. Similarly, the ambiguity detector outperforms prior baselines. Overall, CLUE turns the internal cross-modal attention of a VLM into an explicit, spatially grounded signal for deciding when to ask. The data and code are publicly available at: mouadabrini.github.io/clue
Text-guided image editing aims to modify specific regions according to the target prompt while preserving the identity of the source image. Recent methods exploit explicit binary masks to constrain editing, but hard mask boundaries introduce artifacts and reduce editability. To address these issues, we propose FusionEdit, a training-free image editing framework that achieves precise and controllable edits. First, editing and preserved regions are automatically identified by measuring semantic discrepancies between source and target prompts. To mitigate boundary artifacts, FusionEdit performs distance-aware latent fusion along region boundaries to yield the soft and accurate mask, and employs a total variation loss to enforce smooth transitions, obtaining natural editing results. Second, FusionEdit leverages AdaIN-based modulation within DiT attention layers to perform a statistical attention fusion in the editing region, enhancing editability while preserving global consistency with the source image. Extensive experiments demonstrate that our FusionEdit significantly outperforms state-of-the-art methods. Code is available at \href{https://github.com/Yvan1001/FusionEdit}{https://github.com/Yvan1001/FusionEdit}.