Abstract:Open-vocabulary semantic segmentation has emerged as a promising research direction in remote sensing, enabling the recognition of diverse land-cover types beyond pre-defined category sets. However, existing methods predominantly rely on the passive mapping of visual features and textual embeddings. This ``appearance-based" paradigm lacks geospatial contextual awareness, leading to severe semantic ambiguity and misclassification when encountering land-cover classes with similar spectral features but distinct semantic attributes. To address this, we propose a Geospatial Reasoning Chain-of-Thought (GR-CoT) framework designed to enhance the scene understanding capabilities of Multimodal Large Language Models (MLLMs), thereby guiding open-vocabulary segmentation models toward precise mapping. The framework comprises two collaborative components: an offline knowledge distillation stream and an online instance reasoning stream. The offline stream establishes fine-grained category interpretation standards to resolve semantic conflicts between similar land-cover types. During online inference, the framework executes a sequential reasoning process involving macro-scenario anchoring, visual feature decoupling, and knowledge-driven decision synthesis. This process generates an image-adaptive vocabulary that guides downstream models to achieve pixel-level alignment with correct geographical semantics. Extensive experiments on the LoveDA and GID5 benchmarks demonstrate the superiority of our approach.
Abstract:Foundation Models (FMs) are large-scale, pre-trained AI systems that have revolutionized natural language processing and computer vision, and are now advancing geospatial analysis and Earth Observation (EO). They promise improved generalization across tasks, scalability, and efficient adaptation with minimal labeled data. However, despite the rapid proliferation of geospatial FMs, their real-world utility and alignment with global sustainability goals remain underexplored. We introduce SustainFM, a comprehensive benchmarking framework grounded in the 17 Sustainable Development Goals with extremely diverse tasks ranging from asset wealth prediction to environmental hazard detection. This study provides a rigorous, interdisciplinary assessment of geospatial FMs and offers critical insights into their role in attaining sustainability goals. Our findings show: (1) While not universally superior, FMs often outperform traditional approaches across diverse tasks and datasets. (2) Evaluating FMs should go beyond accuracy to include transferability, generalization, and energy efficiency as key criteria for their responsible use. (3) FMs enable scalable, SDG-grounded solutions, offering broad utility for tackling complex sustainability challenges. Critically, we advocate for a paradigm shift from model-centric development to impact-driven deployment, and emphasize metrics such as energy efficiency, robustness to domain shifts, and ethical considerations.