Unsupervised semantic segmentation is the process of segmenting images into meaningful regions without using labeled data.
Despite recent advances in semantic Simultaneous Localization and Mapping (SLAM) for terrestrial and aerial applications, underwater semantic SLAM remains an open and largely unaddressed research problem due to the unique sensing modalities and the object classes found underwater. This paper presents an object-based semantic SLAM method for underwater environments that can identify, localize, classify, and map a wide variety of marine objects without a priori knowledge of the object classes present in the scene. The method performs unsupervised object segmentation and object-level feature aggregation, and then uses opti-acoustic sensor fusion for object localization. Probabilistic data association is used to determine observation to landmark correspondences. Given such correspondences, the method then jointly optimizes landmark and vehicle position estimates. Indoor and outdoor underwater datasets with a wide variety of objects and challenging acoustic and lighting conditions are collected for evaluation and made publicly available. Quantitative and qualitative results show the proposed method achieves reduced trajectory error compared to baseline methods, and is able to obtain comparable map accuracy to a baseline closed-set method that requires hand-labeled data of all objects in the scene.
Semantic segmentation's performance is often compromised when applied to unlabeled adverse weather conditions. Unsupervised domain adaptation is a potential approach to enhancing the model's adaptability and robustness to adverse weather. However, existing methods encounter difficulties when sequentially adapting the model to multiple unlabeled adverse weather conditions. They struggle to acquire new knowledge while also retaining previously learned knowledge.To address these problems, we propose a semantic segmentation method for multiple adverse weather conditions that incorporates adaptive knowledge acquisition, pseudolabel blending, and weather composition replay. Our adaptive knowledge acquisition enables the model to avoid learning from extreme images that could potentially cause the model to forget. In our approach of blending pseudo-labels, we not only utilize the current model but also integrate the previously learned model into the ongoing learning process. This collaboration between the current teacher and the previous model enhances the robustness of the pseudo-labels for the current target. Our weather composition replay mechanism allows the model to continuously refine its previously learned weather information while simultaneously learning from the new target domain. Our method consistently outperforms the stateof-the-art methods, and obtains the best performance with averaged mIoU (%) of 65.7 and the lowest forgetting (%) of 3.6 against 60.1 and 11.3, on the ACDC datasets for a four-target continual multi-target domain adaptation.
Many practical applications require training of semantic segmentation models on unlabelled datasets and their execution on low-resource hardware. Distillation from a trained source model may represent a solution for the first but does not account for the different distribution of the training data. Unsupervised domain adaptation (UDA) techniques claim to solve the domain shift, but in most cases assume the availability of the source data or an accessible white-box source model, which in practical applications are often unavailable for commercial and/or safety reasons. In this paper, we investigate a more challenging setting in which a lightweight model has to be trained on a target unlabelled dataset for semantic segmentation, under the assumption that we have access only to black-box source model predictions. Our method, named CoRTe, consists of (i) a pseudo-labelling function that extracts reliable knowledge from the black-box source model using its relative confidence, (ii) a pseudo label refinement method to retain and enhance the novel information learned by the student model on the target data, and (iii) a consistent training of the model using the extracted pseudo labels. We benchmark CoRTe on two synthetic-to-real settings, demonstrating remarkable results when using black-box models to transfer knowledge on lightweight models for a target data distribution.




Tremendous breakthroughs have been developed in Semi-Supervised Semantic Segmentation (S4) through contrastive learning. However, due to limited annotations, the guidance on unlabeled images is generated by the model itself, which inevitably exists noise and disturbs the unsupervised training process. To address this issue, we propose a robust contrastive-based S4 framework, termed the Probabilistic Representation Contrastive Learning (PRCL) framework to enhance the robustness of the unsupervised training process. We model the pixel-wise representation as Probabilistic Representations (PR) via multivariate Gaussian distribution and tune the contribution of the ambiguous representations to tolerate the risk of inaccurate guidance in contrastive learning. Furthermore, we introduce Global Distribution Prototypes (GDP) by gathering all PRs throughout the whole training process. Since the GDP contains the information of all representations with the same class, it is robust from the instant noise in representations and bears the intra-class variance of representations. In addition, we generate Virtual Negatives (VNs) based on GDP to involve the contrastive learning process. Extensive experiments on two public benchmarks demonstrate the superiority of our PRCL framework.
Dynamic scene understanding is one of the most conspicuous field of interest among computer vision community. In order to enhance dynamic scene understanding, pixel-wise segmentation with neural networks is widely accepted. The latest researches on pixel-wise segmentation combined semantic and motion information and produced good performance. In this work, we propose a state of art architecture of neural networks to accurately and efficiently get the moving object proposals (MOP). We first train an unsupervised convolutional neural network (UnFlow) to generate optical flow estimation. Then we render the output of optical flow net to a fully convolutional SegNet model. The main contribution of our work is (1) Fine-tuning the pretrained optical flow model on the brand new DAVIS Dataset; (2) Leveraging fully convolutional neural networks with Encoder-Decoder architecture to segment objects. We developed the codes with TensorFlow, and executed the training and evaluation processes on an AWS EC2 instance.




Weakly-supervised semantic segmentation (WSS) ensures high-quality segmentation with limited data and excels when employed as input seed masks for large-scale vision models such as Segment Anything. However, WSS faces challenges related to minor classes since those are overlooked in images with adjacent multiple classes, a limitation originating from the overfitting of traditional expansion methods like Random Walk. We first address this by employing unsupervised and weakly-supervised feature maps instead of conventional methodologies, allowing for hierarchical mask enhancement. This method distinctly categorizes higher-level classes and subsequently separates their associated lower-level classes, ensuring all classes are correctly restored in the mask without losing minor ones. Our approach, validated through extensive experimentation, significantly improves WSS across five benchmarks (VOC: 79.8\%, COCO: 53.9\%, Context: 49.0\%, ADE: 32.9\%, Stuff: 37.4\%), reducing the gap with fully supervised methods by over 84\% on the VOC validation set. Code is available at https://github.com/shjo-april/DHR.




Over the past decade, automated methods have been developed to detect cracks more efficiently, accurately, and objectively, with the ultimate goal of replacing conventional manual visual inspection techniques. Among these methods, semantic segmentation algorithms have demonstrated promising results in pixel-wise crack detection tasks. However, training such data-driven algorithms requires a large amount of human-annotated datasets with pixel-level annotations, which is a highly labor-intensive and time-consuming process. Moreover, supervised learning-based methods often struggle with poor generalization ability in unseen datasets. Therefore, we propose an unsupervised pixel-wise road crack detection network, known as UP-CrackNet. Our approach first generates multi-scale square masks and randomly selects them to corrupt undamaged road images by removing certain regions. Subsequently, a generative adversarial network is trained to restore the corrupted regions by leveraging the semantic context learned from surrounding uncorrupted regions. During the testing phase, an error map is generated by calculating the difference between the input and restored images, which allows for pixel-wise crack detection. Our comprehensive experimental results demonstrate that UP-CrackNet outperforms other general-purpose unsupervised anomaly detection algorithms, and exhibits comparable performance and superior generalizability when compared with state-of-the-art supervised crack segmentation algorithms. Our source code is publicly available at mias.group/UP-CrackNet.




Semantic segmentation is essential in computer vision for various applications, yet traditional approaches face significant challenges, including the high cost of annotation and extensive training for supervised learning. Additionally, due to the limited predefined categories in supervised learning, models typically struggle with infrequent classes and are unable to predict novel classes. To address these limitations, we propose MaskDiffusion, an innovative approach that leverages pretrained frozen Stable Diffusion to achieve open-vocabulary semantic segmentation without the need for additional training or annotation, leading to improved performance compared to similar methods. We also demonstrate the superior performance of MaskDiffusion in handling open vocabularies, including fine-grained and proper noun-based categories, thus expanding the scope of segmentation applications. Overall, our MaskDiffusion shows significant qualitative and quantitative improvements in contrast to other comparable unsupervised segmentation methods, i.e. on the Potsdam dataset (+10.5 mIoU compared to GEM) and COCO-Stuff (+14.8 mIoU compared to DiffSeg). All code and data will be released at https://github.com/Valkyrja3607/MaskDiffusion.
Semantic segmentation models trained on annotated data fail to generalize well when the input data distribution changes over extended time period, leading to requiring re-training to maintain performance. Classic Unsupervised domain adaptation (UDA) attempts to address a similar problem when there is target domain with no annotated data points through transferring knowledge from a source domain with annotated data. We develop an online UDA algorithm for semantic segmentation of images that improves model generalization on unannotated domains in scenarios where source data access is restricted during adaptation. We perform model adaptation is by minimizing the distributional distance between the source latent features and the target features in a shared embedding space. Our solution promotes a shared domain-agnostic latent feature space between the two domains, which allows for classifier generalization on the target dataset. To alleviate the need of access to source samples during adaptation, we approximate the source latent feature distribution via an appropriate surrogate distribution, in this case a Gassian mixture model (GMM). We evaluate our approach on well established semantic segmentation datasets and demonstrate it compares favorably against state-of-the-art (SOTA) UDA semantic segmentation methods.
This paper presents a fresh perspective on the role of saliency maps in weakly-supervised semantic segmentation (WSSS) and offers new insights and research directions based on our empirical findings. We conduct comprehensive experiments and observe that the quality of the saliency map is a critical factor in saliency-guided WSSS approaches. Nonetheless, we find that the saliency maps used in previous works are often arbitrarily chosen, despite their significant impact on WSSS. Additionally, we observe that the choice of the threshold, which has received less attention before, is non-trivial in WSSS. To facilitate more meaningful and rigorous research for saliency-guided WSSS, we introduce \texttt{WSSS-BED}, a standardized framework for conducting research under unified conditions. \texttt{WSSS-BED} provides various saliency maps and activation maps for seven WSSS methods, as well as saliency maps from unsupervised salient object detection models.