Topic:Unsupervised Semantic Segmentation
What is Unsupervised Semantic Segmentation? Unsupervised semantic segmentation is the process of segmenting images into meaningful regions without using labeled data.
Papers and Code
Mar 19, 2024
Abstract:Generating annotations for bird's-eye-view (BEV) segmentation presents significant challenges due to the scenes' complexity and the high manual annotation cost. In this work, we address these challenges by leveraging the abundance of unlabeled data available. We propose the Perspective Cue Training (PCT) framework, a novel training framework that utilizes pseudo-labels generated from unlabeled perspective images using publicly available semantic segmentation models trained on large street-view datasets. PCT applies a perspective view task head to the image encoder shared with the BEV segmentation head, effectively utilizing the unlabeled data to be trained with the generated pseudo-labels. Since image encoders are present in nearly all camera-based BEV segmentation architectures, PCT is flexible and applicable to various existing BEV architectures. PCT can be applied to various settings where unlabeled data is available. In this paper, we applied PCT for semi-supervised learning (SSL) and unsupervised domain adaptation (UDA). Additionally, we introduce strong input perturbation through Camera Dropout (CamDrop) and feature perturbation via BEV Feature Dropout (BFD), which are crucial for enhancing SSL capabilities using our teacher-student framework. Our comprehensive approach is simple and flexible but yields significant improvements over various baselines for SSL and UDA, achieving competitive performances even against the current state-of-the-art.
* 13 pages, 5 figures
Via

Dec 21, 2023
Abstract:The use of autonomous robots for assistance tasks in hospitals has the potential to free up qualified staff and im-prove patient care. However, the ubiquity of deformable and transparent objects in hospital settings poses signif-icant challenges to vision-based perception systems. We present EfficientPPS, a neural architecture for part-aware panoptic segmentation that provides robots with semantically rich visual information for grasping and ma-nipulation tasks. We also present an unsupervised data collection and labelling method to reduce the need for human involvement in the training process. EfficientPPS is evaluated on a dataset containing real-world hospital objects and demonstrated to be robust and efficient in grasping transparent transfusion bags with a collaborative robot arm.
* ISR Europe 2023
* 8 pages, 8 figures, presented at the 56th International Symposium on
Robotics (ISR Europe)
Via

Apr 08, 2024
Abstract:LiDAR semantic segmentation (LSS) is a critical task in autonomous driving and has achieved promising progress. However, prior LSS methods are conventionally investigated and evaluated on datasets within the same domain in clear weather. The robustness of LSS models in unseen scenes and all weather conditions is crucial for ensuring safety and reliability in real applications. To this end, we propose UniMix, a universal method that enhances the adaptability and generalizability of LSS models. UniMix first leverages physically valid adverse weather simulation to construct a Bridge Domain, which serves to bridge the domain gap between the clear weather scenes and the adverse weather scenes. Then, a Universal Mixing operator is defined regarding spatial, intensity, and semantic distributions to create the intermediate domain with mixed samples from given domains. Integrating the proposed two techniques into a teacher-student framework, UniMix efficiently mitigates the domain gap and enables LSS models to learn weather-robust and domain-invariant representations. We devote UniMix to two main setups: 1) unsupervised domain adaption, adapting the model from the clear weather source domain to the adverse weather target domain; 2) domain generalization, learning a model that generalizes well to unseen scenes in adverse weather. Extensive experiments validate the effectiveness of UniMix across different tasks and datasets, all achieving superior performance over state-of-the-art methods. The code will be released.
* Accepted by CVPR 2024
Via

Jan 13, 2024
Abstract:Cropland mapping can play a vital role in addressing environmental, agricultural, and food security challenges. However, in the context of Africa, practical applications are often hindered by the limited availability of high-resolution cropland maps. Such maps typically require extensive human labeling, thereby creating a scalability bottleneck. To address this, we propose an approach that utilizes unsupervised object clustering to refine existing weak labels, such as those obtained from global cropland maps. The refined labels, in conjunction with sparse human annotations, serve as training data for a semantic segmentation network designed to identify cropland areas. We conduct experiments to demonstrate the benefits of the improved weak labels generated by our method. In a scenario where we train our model with only 33 human-annotated labels, the F_1 score for the cropland category increases from 0.53 to 0.84 when we add the mined negative labels.
* 5 pages
Via

Dec 19, 2023
Abstract:Semi-supervised action segmentation aims to perform frame-wise classification in long untrimmed videos, where only a fraction of videos in the training set have labels. Recent studies have shown the potential of contrastive learning in unsupervised representation learning using unlabelled data. However, learning the representation of each frame by unsupervised contrastive learning for action segmentation remains an open and challenging problem. In this paper, we propose a novel Semantic-guided Multi-level Contrast scheme with a Neighbourhood-Consistency-Aware unit (SMC-NCA) to extract strong frame-wise representations for semi-supervised action segmentation. Specifically, for representation learning, SMC is firstly used to explore intra- and inter-information variations in a unified and contrastive way, based on dynamic clustering process of the original input, encoded semantic and temporal features. Then, the NCA module, which is responsible for enforcing spatial consistency between neighbourhoods centered at different frames to alleviate over-segmentation issues, works alongside SMC for semi-supervised learning. Our SMC outperforms the other state-of-the-art methods on three benchmarks, offering improvements of up to 17.8% and 12.6% in terms of edit distance and accuracy, respectively. Additionally, the NCA unit results in significant better segmentation performance against the others in the presence of only 5% labelled videos. We also demonstrate the effectiveness of the proposed method on our Parkinson's Disease Mouse Behaviour (PDMB) dataset. The code and datasets will be made publicly available.
Via

Dec 21, 2023
Abstract:Logical anomalies (LA) refer to data violating underlying logical constraints e.g., the quantity, arrangement, or composition of components within an image. Detecting accurately such anomalies requires models to reason about various component types through segmentation. However, curation of pixel-level annotations for semantic segmentation is both time-consuming and expensive. Although there are some prior few-shot or unsupervised co-part segmentation algorithms, they often fail on images with industrial object. These images have components with similar textures and shapes, and a precise differentiation proves challenging. In this study, we introduce a novel component segmentation model for LA detection that leverages a few labeled samples and unlabeled images sharing logical constraints. To ensure consistent segmentation across unlabeled images, we employ a histogram matching loss in conjunction with an entropy loss. As segmentation predictions play a crucial role, we propose to enhance both local and global sample validity detection by capturing key aspects from visual semantics via three memory banks: class histograms, component composition embeddings and patch-level representations. For effective LA detection, we propose an adaptive scaling strategy to standardize anomaly scores from different memory banks in inference. Extensive experiments on the public benchmark MVTec LOCO AD reveal our method achieves 98.1% AUROC in LA detection vs. 89.6% from competing methods.
* Accepted at AAAI2024
Via

Dec 16, 2023
Abstract:Transformers have revolutionized deep learning based computer vision with improved performance as well as robustness to natural corruptions and adversarial attacks. Transformers are used predominantly for 2D vision tasks, including image classification, semantic segmentation, and object detection. However, robots and advanced driver assistance systems also require 3D scene understanding for decision making by extracting structure-from-motion (SfM). We propose a robust transformer-based monocular SfM method that learns to predict monocular pixel-wise depth, ego vehicle's translation and rotation, as well as camera's focal length and principal point, simultaneously. With experiments on KITTI and DDAD datasets, we demonstrate how to adapt different vision transformers and compare them against contemporary CNN-based methods. Our study shows that transformer-based architecture, though lower in run-time efficiency, achieves comparable performance while being more robust against natural corruptions, as well as untargeted and targeted attacks.
* International Joint Conference on Computer Vision, Imaging and
Computer Graphics. Cham: Springer Nature Switzerland, 2022. Published at
"Communications in Computer and Information Science, vol 1815. Springer
Nature". arXiv admin note: text overlap with arXiv:2202.03131
Via

Feb 02, 2024
Abstract:Visual foundation models have achieved remarkable results in zero-shot image classification and segmentation, but zero-shot change detection remains an open problem. In this paper, we propose the segment any change models (AnyChange), a new type of change detection model that supports zero-shot prediction and generalization on unseen change types and data distributions. AnyChange is built on the segment anything model (SAM) via our training-free adaptation method, bitemporal latent matching. By revealing and exploiting intra-image and inter-image semantic similarities in SAM's latent space, bitemporal latent matching endows SAM with zero-shot change detection capabilities in a training-free way. We also propose a point query mechanism to enable AnyChange's zero-shot object-centric change detection capability. We perform extensive experiments to confirm the effectiveness of AnyChange for zero-shot change detection. AnyChange sets a new record on the SECOND benchmark for unsupervised change detection, exceeding the previous SOTA by up to 4.4% F$_1$ score, and achieving comparable accuracy with negligible manual annotations (1 pixel per image) for supervised change detection.
* technical report, 12 pages
Via

Nov 30, 2023
Abstract:Video topic segmentation unveils the coarse-grained semantic structure underlying videos and is essential for other video understanding tasks. Given the recent surge in multi-modal, relying solely on a single modality is arguably insufficient. On the other hand, prior solutions for similar tasks like video scene/shot segmentation cater to short videos with clear visual shifts but falter for long videos with subtle changes, such as livestreams. In this paper, we introduce a multi-modal video topic segmenter that utilizes both video transcripts and frames, bolstered by a cross-modal attention mechanism. Furthermore, we propose a dual-contrastive learning framework adhering to the unsupervised domain adaptation paradigm, enhancing our model's adaptability to longer, more semantically complex videos. Experiments on short and long video corpora demonstrate that our proposed solution, significantly surpasses baseline methods in terms of both accuracy and transferability, in both intra- and cross-domain settings.
* Accepted at the 30th International Conference on Multimedia Modeling
(MMM 2024)
Via

Nov 29, 2023
Abstract:In this paper, we propose a simple yet effective approach for self-supervised video object segmentation (VOS). Our key insight is that the inherent structural dependencies present in DINO-pretrained Transformers can be leveraged to establish robust spatio-temporal correspondences in videos. Furthermore, simple clustering on this correspondence cue is sufficient to yield competitive segmentation results. Previous self-supervised VOS techniques majorly resort to auxiliary modalities or utilize iterative slot attention to assist in object discovery, which restricts their general applicability and imposes higher computational requirements. To deal with these challenges, we develop a simplified architecture that capitalizes on the emerging objectness from DINO-pretrained Transformers, bypassing the need for additional modalities or slot attention. Specifically, we first introduce a single spatio-temporal Transformer block to process the frame-wise DINO features and establish spatio-temporal dependencies in the form of self-attention. Subsequently, utilizing these attention maps, we implement hierarchical clustering to generate object segmentation masks. To train the spatio-temporal block in a fully self-supervised manner, we employ semantic and dynamic motion consistency coupled with entropy normalization. Our method demonstrates state-of-the-art performance across multiple unsupervised VOS benchmarks and particularly excels in complex real-world multi-object video segmentation tasks such as DAVIS-17-Unsupervised and YouTube-VIS-19. The code and model checkpoints will be released at https://github.com/shvdiwnkozbw/SSL-UVOS.
Via
