Modern voice cloning (VC) can synthesize speech that closely matches a target speaker from only seconds of reference audio, enabling applications such as personalized speech interfaces and dubbing. In practical deployments, modern audio generation models inevitably encounter noisy reference audios, imperfect text prompts, and diverse downstream processing, which can significantly hurt robustness. Despite rapid progress in VC driven by autoregressive codec-token language models and diffusion-based models, robustness under realistic deployment shifts remains underexplored. This paper introduces RVCBench, a comprehensive benchmark that evaluates Robustness in VC across the full generation pipeline, including input variation, generation challenges, output post-processing, and adversarial perturbations, covering 10 robustness tasks, 225 speakers, 14,370 utterances, and 11 representative modern VC models. Our evaluation uncovers substantial robustness gaps in VC: performance can deteriorate sharply under common input shifts and post-processing; long-context and cross-lingual scenarios further expose stability limitations; and both passive noise and proactive perturbation influence generation robustness. Collectively, these findings provide a unified picture of how current VC models fail in practice and introduce a standardized, open-source testbed to support the development of more robust and deployable VC models. We open-source our project at https://github.com/Nanboy-Ronan/RVCBench.
This research presents a few-shot voice cloning system for Nepali speakers, designed to synthesize speech in a specific speaker's voice from Devanagari text using minimal data. Voice cloning in Nepali remains largely unexplored due to its low-resource nature. To address this, we constructed separate datasets: untranscribed audio for training a speaker encoder and paired text-audio data for training a Tacotron2-based synthesizer. The speaker encoder, optimized with Generative End2End loss, generates embeddings that capture the speaker's vocal identity, validated through Uniform Manifold Approximation and Projection (UMAP) for dimension reduction visualizations. These embeddings are fused with Tacotron2's text embeddings to produce mel-spectrograms, which are then converted into audio using a WaveRNN vocoder. Audio data were collected from various sources, including self-recordings, and underwent thorough preprocessing for quality and alignment. Training was performed using mel and gate loss functions under multiple hyperparameter settings. The system effectively clones speaker characteristics even for unseen voices, demonstrating the feasibility of few-shot voice cloning for the Nepali language and establishing a foundation for personalized speech synthesis in low-resource scenarios.
Recent progress of voice conversion~(VC) has achieved a new milestone in speaker cloning and linguistic preservation. But the field remains fragmented, relying on specialized models for linguistic-preserving, expressive, and singing scenarios. We propose OneVoice, a unified zero-shot framework capable of handling all three scenarios within a single model. OneVoice is built upon a continuous language model trained with VAE-free next-patch diffusion, ensuring high fidelity and efficient sequence modeling. Its core design for unification lies in a Mixture-of-Experts (MoE) designed to explicitly model shared conversion knowledge and scenario-specific expressivity. Expert selection is coordinated by a dual-path routing mechanism, including shared expert isolation and scenario-aware domain expert assignment with global-local cues. For precise conditioning, scenario-specific prosodic features are fused into each layer via a gated mechanism, allowing adaptive usage of prosody information. Furthermore, to enable the core idea and alleviate the imbalanced issue (abundant speech vs. scarce singing), we adopt a two-stage progressive training that includes foundational pre-training and scenario enhancement with LoRA-based domain experts. Experiments show that OneVoice matches or surpasses specialized models across all three scenarios, while verifying flexible control over scenarios and offering a fast decoding version as few as 2 steps. Code and model will be released soon.
In this report, we present the Qwen3-TTS series, a family of advanced multilingual, controllable, robust, and streaming text-to-speech models. Qwen3-TTS supports state-of-the-art 3-second voice cloning and description-based control, allowing both the creation of entirely novel voices and fine-grained manipulation over the output speech. Trained on over 5 million hours of speech data spanning 10 languages, Qwen3-TTS adopts a dual-track LM architecture for real-time synthesis, coupled with two speech tokenizers: 1) Qwen-TTS-Tokenizer-25Hz is a single-codebook codec emphasizing semantic content, which offers seamlessly integration with Qwen-Audio and enables streaming waveform reconstruction via a block-wise DiT. 2) Qwen-TTS-Tokenizer-12Hz achieves extreme bitrate reduction and ultra-low-latency streaming, enabling immediate first-packet emission ($97\,\mathrm{ms}$) through its 12.5 Hz, 16-layer multi-codebook design and a lightweight causal ConvNet. Extensive experiments indicate state-of-the-art performance across diverse objective and subjective benchmark (e.g., TTS multilingual test set, InstructTTSEval, and our long speech test set). To facilitate community research and development, we release both tokenizers and models under the Apache 2.0 license.
Recent end-to-end spoken dialogue systems leverage speech tokenizers and neural audio codecs to enable LLMs to operate directly on discrete speech representations. However, these models often exhibit limited speaker identity preservation, hindering personalized voice interaction. In this work, we present Chroma 1.0, the first open-source, real-time, end-to-end spoken dialogue model that achieves both low-latency interaction and high-fidelity personalized voice cloning. Chroma achieves sub-second end-to-end latency through an interleaved text-audio token schedule (1:2) that supports streaming generation, while maintaining high-quality personalized voice synthesis across multi-turn conversations. Our experimental results demonstrate that Chroma achieves a 10.96% relative improvement in speaker similarity over the human baseline, with a Real-Time Factor (RTF) of 0.43, while maintaining strong reasoning and dialogue capabilities. Our code and models are publicly available at https://github.com/FlashLabs-AI-Corp/FlashLabs-Chroma and https://huggingface.co/FlashLabs/Chroma-4B .
Despite rapid progress in text-to-speech (TTS), open-source systems still lack truly instruction-following, fine-grained control over core speech attributes (e.g., pitch, speaking rate, age, emotion, and style). We present VoiceSculptor, an open-source unified system that bridges this gap by integrating instruction-based voice design and high-fidelity voice cloning in a single framework. It generates controllable speaker timbre directly from natural-language descriptions, supports iterative refinement via Retrieval-Augmented Generation (RAG), and provides attribute-level edits across multiple dimensions. The designed voice is then rendered into a prompt waveform and fed into a cloning model to enable high-fidelity timbre transfer for downstream speech synthesis. VoiceSculptor achieves open-source state-of-the-art (SOTA) on InstructTTSEval-Zh, and is fully open-sourced, including code and pretrained models, to advance reproducible instruction-controlled TTS research.
Joint audio-video generation aims to synthesize synchronized multisensory content, yet current unified models struggle with fine-grained acoustic control, particularly for identity-preserving speech. Existing approaches either suffer from temporal misalignment due to cascaded generation or lack the capability to perform zero-shot voice cloning within a joint synthesis framework. In this work, we present MM-Sonate, a multimodal flow-matching framework that unifies controllable audio-video joint generation with zero-shot voice cloning capabilities. Unlike prior works that rely on coarse semantic descriptions, MM-Sonate utilizes a unified instruction-phoneme input to enforce strict linguistic and temporal alignment. To enable zero-shot voice cloning, we introduce a timbre injection mechanism that effectively decouples speaker identity from linguistic content. Furthermore, addressing the limitations of standard classifier-free guidance in multimodal settings, we propose a noise-based negative conditioning strategy that utilizes natural noise priors to significantly enhance acoustic fidelity. Empirical evaluations demonstrate that MM-Sonate establishes new state-of-the-art performance in joint generation benchmarks, significantly outperforming baselines in lip synchronization and speech intelligibility, while achieving voice cloning fidelity comparable to specialized Text-to-Speech systems.
The rapid advancement of speech synthesis technologies, including text-to-speech (TTS) and voice conversion (VC), has intensified security and privacy concerns related to voice cloning. Recent defenses attempt to prevent unauthorized cloning by embedding protective perturbations into speech to obscure speaker identity while maintaining intelligibility. However, adversaries can apply advanced purification techniques to remove these perturbations, recover authentic acoustic characteristics, and regenerate cloneable voices. Despite the growing realism of such attacks, the robustness of existing defenses under adaptive purification remains insufficiently studied. Most existing purification methods are designed to counter adversarial noise in automatic speech recognition (ASR) systems rather than speaker verification or voice cloning pipelines. As a result, they fail to suppress the fine-grained acoustic cues that define speaker identity and are often ineffective against speaker verification attacks (SVA). To address these limitations, we propose Diffusion-Bridge (VocalBridge), a purification framework that learns a latent mapping from perturbed to clean speech in the EnCodec latent space. Using a time-conditioned 1D U-Net with a cosine noise schedule, the model enables efficient, transcript-free purification while preserving speaker-discriminative structure. We further introduce a Whisper-guided phoneme variant that incorporates lightweight temporal guidance without requiring ground-truth transcripts. Experimental results show that our approach consistently outperforms existing purification methods in recovering cloneable voices from protected speech. Our findings demonstrate the fragility of current perturbation-based defenses and highlight the need for more robust protection mechanisms against evolving voice-cloning and speaker verification threats.
Generative audio technologies now enable highly realistic voice cloning and real-time voice conversion, increasing the risk of impersonation, fraud, and misinformation in communication channels such as phone and video calls. This study investigates real-time detection of AI-generated speech produced using Retrieval-based Voice Conversion (RVC), evaluated on the DEEP-VOICE dataset, which includes authentic and voice-converted speech samples from multiple well-known speakers. To simulate realistic conditions, deepfake generation is applied to isolated vocal components, followed by the reintroduction of background ambiance to suppress trivial artifacts and emphasize conversion-specific cues. We frame detection as a streaming classification task by dividing audio into one-second segments, extracting time-frequency and cepstral features, and training supervised machine learning models to classify each segment as real or voice-converted. The proposed system enables low-latency inference, supporting both segment-level decisions and call-level aggregation. Experimental results show that short-window acoustic features can reliably capture discriminative patterns associated with RVC speech, even in noisy backgrounds. These findings demonstrate the feasibility of practical, real-time deepfake speech detection and underscore the importance of evaluating under realistic audio mixing conditions for robust deployment.
Large speech generation models are evolving from single-speaker, short sentence synthesis to multi-speaker, long conversation geneartion. Current long-form speech generation models are predominately constrained to dyadic, turn-based interactions. To address this, we introduce JoyVoice, a novel anthropomorphic foundation model designed for flexible, boundary-free synthesis of up to eight speakers. Unlike conventional cascaded systems, JoyVoice employs a unified E2E-Transformer-DiT architecture that utilizes autoregressive hidden representations directly for diffusion inputs, enabling holistic end-to-end optimization. We further propose a MM-Tokenizer operating at a low bitrate of 12.5 Hz, which integrates multitask semantic and MMSE losses to effectively model both semantic and acoustic information. Additionally, the model incorporates robust text front-end processing via large-scale data perturbation. Experiments show that JoyVoice achieves state-of-the-art results in multilingual generation (Chinese, English, Japanese, Korean) and zero-shot voice cloning. JoyVoice achieves top-tier results on both the Seed-TTS-Eval Benchmark and multi-speaker long-form conversational voice cloning tasks, demonstrating superior audio quality and generalization. It achieves significant improvements in prosodic continuity for long-form speech, rhythm richness in multi-speaker conversations, paralinguistic naturalness, besides superior intelligibility. We encourage readers to listen to the demo at https://jea-speech.github.io/JoyVoice