Abstract:Joint audio-video generation aims to synthesize synchronized multisensory content, yet current unified models struggle with fine-grained acoustic control, particularly for identity-preserving speech. Existing approaches either suffer from temporal misalignment due to cascaded generation or lack the capability to perform zero-shot voice cloning within a joint synthesis framework. In this work, we present MM-Sonate, a multimodal flow-matching framework that unifies controllable audio-video joint generation with zero-shot voice cloning capabilities. Unlike prior works that rely on coarse semantic descriptions, MM-Sonate utilizes a unified instruction-phoneme input to enforce strict linguistic and temporal alignment. To enable zero-shot voice cloning, we introduce a timbre injection mechanism that effectively decouples speaker identity from linguistic content. Furthermore, addressing the limitations of standard classifier-free guidance in multimodal settings, we propose a noise-based negative conditioning strategy that utilizes natural noise priors to significantly enhance acoustic fidelity. Empirical evaluations demonstrate that MM-Sonate establishes new state-of-the-art performance in joint generation benchmarks, significantly outperforming baselines in lip synchronization and speech intelligibility, while achieving voice cloning fidelity comparable to specialized Text-to-Speech systems.



Abstract:Deep learning models perform best with abundant, high-quality labels, yet such conditions are rarely achievable in EEG-based emotion recognition. Electroencephalogram (EEG) signals are easily corrupted by artifacts and individual variability, while emotional labels often stem from subjective and inconsistent reports-making robust affective decoding particularly difficult. We propose an uncertainty-aware active learning framework that enhances robustness to label noise by jointly leveraging model uncertainty and cross-modal consistency. Instead of relying solely on EEG-based uncertainty estimates, the method evaluates cross-modal alignment to determine whether uncertainty originates from cognitive ambiguity or sensor noise. A representation alignment module embeds EEG and face features into a shared latent space, enforcing semantic coherence between modalities. Residual discrepancies are treated as noise-induced inconsistencies, and these samples are selectively queried for oracle feedback during active learning. This feedback-driven process guides the network toward reliable, informative samples and reduces the impact of noisy labels. Experiments on the ASCERTAIN dataset examine the efficiency and robustness of ours, highlighting its potential as a data-efficient and noise-tolerant approach for EEG-based affective decoding in brain-computer interface systems.




Abstract:Clinical electroencephalogram (EEG) reports encode domain-specific linguistic conventions that general-purpose language models (LMs) fail to capture. We introduce NeuroLex, a lightweight domain-adaptive language model trained purely on EEG report text from the Harvard Electroencephalography Database. Unlike existing biomedical LMs, NeuroLex is tailored to the linguistic and diagnostic characteristics of EEG reporting, enabling it to serve as both an independent textual model and a decoder backbone for multimodal EEG-language systems. Using span-corruption pretraining and instruction-style fine-tuning on report polishing, paragraph summarization, and terminology question answering, NeuroLex learns the syntax and reasoning patterns characteristic of EEG interpretation. Comprehensive evaluations show that it achieves lower perplexity, higher extraction and summarization accuracy, better label efficiency, and improved robustness to negation and factual hallucination compared with general models of the same scale. With an EEG-aware linguistic backbone, NeuroLex bridges biomedical text modeling and brain-computer interface applications, offering a foundation for interpretable and language-driven neural decoding.
Abstract:In the domain of non-generative visual counterfactual explanations (CE), traditional techniques frequently involve the substitution of sections within a query image with corresponding sections from distractor images. Such methods have historically overlooked the semantic relevance of the replacement regions to the target object, thereby impairing the model's interpretability and hindering the editing workflow. Addressing these challenges, the present study introduces an innovative methodology named as Weighted Semantic Map with Auto-adaptive Candidate Editing Network (WSAE-Net). Characterized by two significant advancements: the determination of an weighted semantic map and the auto-adaptive candidate editing sequence. First, the generation of the weighted semantic map is designed to maximize the reduction of non-semantic feature units that need to be computed, thereby optimizing computational efficiency. Second, the auto-adaptive candidate editing sequences are designed to determine the optimal computational order among the feature units to be processed, thereby ensuring the efficient generation of counterfactuals while maintaining the semantic relevance of the replacement feature units to the target object. Through comprehensive experimentation, our methodology demonstrates superior performance, contributing to a more lucid and in-depth understanding of visual counterfactual explanations.




Abstract:Attribution-based explanation techniques capture key patterns to enhance visual interpretability; however, these patterns often lack the granularity needed for insight in fine-grained tasks, particularly in cases of model misclassification, where explanations may be insufficiently detailed. To address this limitation, we propose a fine-grained counterfactual explanation framework that generates both object-level and part-level interpretability, addressing two fundamental questions: (1) which fine-grained features contribute to model misclassification, and (2) where dominant local features influence counterfactual adjustments. Our approach yields explainable counterfactuals in a non-generative manner by quantifying similarity and weighting component contributions within regions of interest between correctly classified and misclassified samples. Furthermore, we introduce a saliency partition module grounded in Shapley value contributions, isolating features with region-specific relevance. Extensive experiments demonstrate the superiority of our approach in capturing more granular, intuitively meaningful regions, surpassing fine-grained methods.
Abstract:Brain-to-speech (BTS) systems represent a groundbreaking approach to human communication by enabling the direct transformation of neural activity into linguistic expressions. While recent non-invasive BTS studies have largely focused on decoding predefined words or sentences, achieving open-vocabulary neural communication comparable to natural human interaction requires decoding unconstrained speech. Additionally, effectively integrating diverse signals derived from speech is crucial for developing personalized and adaptive neural communication and rehabilitation solutions for patients. This study investigates the potential of speech synthesis for previously unseen sentences across various speech modes by leveraging phoneme-level information extracted from high-density electroencephalography (EEG) signals, both independently and in conjunction with electromyography (EMG) signals. Furthermore, we examine the properties affecting phoneme decoding accuracy during sentence reconstruction and offer neurophysiological insights to further enhance EEG decoding for more effective neural communication solutions. Our findings underscore the feasibility of biosignal-based sentence-level speech synthesis for reconstructing unseen sentences, highlighting a significant step toward developing open-vocabulary neural communication systems adapted to diverse patient needs and conditions. Additionally, this study provides meaningful insights into the development of communication and rehabilitation solutions utilizing EEG-based decoding technologies.




Abstract:We propose Kling-Foley, a large-scale multimodal Video-to-Audio generation model that synthesizes high-quality audio synchronized with video content. In Kling-Foley, we introduce multimodal diffusion transformers to model the interactions between video, audio, and text modalities, and combine it with a visual semantic representation module and an audio-visual synchronization module to enhance alignment capabilities. Specifically, these modules align video conditions with latent audio elements at the frame level, thereby improving semantic alignment and audio-visual synchronization. Together with text conditions, this integrated approach enables precise generation of video-matching sound effects. In addition, we propose a universal latent audio codec that can achieve high-quality modeling in various scenarios such as sound effects, speech, singing, and music. We employ a stereo rendering method that imbues synthesized audio with a spatial presence. At the same time, in order to make up for the incomplete types and annotations of the open-source benchmark, we also open-source an industrial-level benchmark Kling-Audio-Eval. Our experiments show that Kling-Foley trained with the flow matching objective achieves new audio-visual SOTA performance among public models in terms of distribution matching, semantic alignment, temporal alignment and audio quality.



Abstract:Multimodal learning has been a popular area of research, yet integrating electroencephalogram (EEG) data poses unique challenges due to its inherent variability and limited availability. In this paper, we introduce a novel multimodal framework that accommodates not only conventional modalities such as video, images, and audio, but also incorporates EEG data. Our framework is designed to flexibly handle varying input sizes, while dynamically adjusting attention to account for feature importance across modalities. We evaluate our approach on a recently introduced emotion recognition dataset that combines data from three modalities, making it an ideal testbed for multimodal learning. The experimental results provide a benchmark for the dataset and demonstrate the effectiveness of the proposed framework. This work highlights the potential of integrating EEG into multimodal systems, paving the way for more robust and comprehensive applications in emotion recognition and beyond.


Abstract:In the quest for efficient neural network models for neural data interpretation and user intent classification in brain-computer interfaces (BCIs), learning meaningful sparse representations of the underlying neural subspaces is crucial. The present study introduces a sparse multitask learning framework for motor imagery (MI) and motor execution (ME) tasks, inspired by the natural partitioning of associated neural subspaces observed in the human brain. Given a dual-task CNN model for MI-ME classification, we apply a saliency-based sparsification approach to prune superfluous connections and reinforce those that show high importance in both tasks. Through our approach, we seek to elucidate the distinct and common neural ensembles associated with each task, employing principled sparsification techniques to eliminate redundant connections and boost the fidelity of neural signal decoding. Our results indicate that this tailored sparsity can mitigate the overfitting problem and improve the test performance with small amount of data, suggesting a viable path forward for computationally efficient and robust BCI systems.




Abstract:Increasing the size of embedding layers has shown to be effective in improving the performance of recommendation models, yet gradually causing their sizes to exceed terabytes in industrial recommender systems, and hence the increase of computing and storage costs. To save resources while maintaining model performances, we propose SHARK, the model compression practice we have summarized in the recommender system of industrial scenarios. SHARK consists of two main components. First, we use the novel first-order component of Taylor expansion as importance scores to prune the number of embedding tables (feature fields). Second, we introduce a new row-wise quantization method to apply different quantization strategies to each embedding. We conduct extensive experiments on both public and industrial datasets, demonstrating that each component of our proposed SHARK framework outperforms previous approaches. We conduct A/B tests in multiple models on Kuaishou, such as short video, e-commerce, and advertising recommendation models. The results of the online A/B test showed SHARK can effectively reduce the memory footprint of the embedded layer. For the short-video scenarios, the compressed model without any performance drop significantly saves 70% storage and thousands of machines, improves 30\% queries per second (QPS), and has been deployed to serve hundreds of millions of users and process tens of billions of requests every day.