Stereo matching is the process of finding corresponding points in stereo images to estimate depth information.
High-resolution (5MP+) stereo vision systems are essential for advancing robotic capabilities, enabling operation over longer ranges and generating significantly denser and accurate 3D point clouds. However, realizing the full potential of high-angular-resolution sensors requires a commensurately higher level of calibration accuracy and faster processing -- requirements often unmet by conventional methods. This study addresses that critical gap by processing 5MP camera imagery using a novel, advanced frame-to-frame calibration and stereo matching methodology designed to achieve both high accuracy and speed. Furthermore, we introduce a new approach to evaluate real-time performance by comparing real-time disparity maps with ground-truth disparity maps derived from more computationally intensive stereo matching algorithms. Crucially, the research demonstrates that high-pixel-count cameras yield high-quality point clouds only through the implementation of high-accuracy calibration.
Recent advances in image-based satellite 3D reconstruction have progressed along two complementary directions. On one hand, multi-date approaches using NeRF or Gaussian-splatting jointly model appearance and geometry across many acquisitions, achieving accurate reconstructions on opportunistic imagery with numerous observations. On the other hand, classical stereoscopic reconstruction pipelines deliver robust and scalable results for simultaneous or quasi-simultaneous image pairs. However, when the two images are captured months apart, strong seasonal, illumination, and shadow changes violate standard stereoscopic assumptions, causing existing pipelines to fail. This work presents the first Diachronic Stereo Matching method for satellite imagery, enabling reliable 3D reconstruction from temporally distant pairs. Two advances make this possible: (1) fine-tuning a state-of-the-art deep stereo network that leverages monocular depth priors, and (2) exposing it to a dataset specifically curated to include a diverse set of diachronic image pairs. In particular, we start from a pretrained MonSter model, trained initially on a mix of synthetic and real datasets such as SceneFlow and KITTI, and fine-tune it on a set of stereo pairs derived from the DFC2019 remote sensing challenge. This dataset contains both synchronic and diachronic pairs under diverse seasonal and illumination conditions. Experiments on multi-date WorldView-3 imagery demonstrate that our approach consistently surpasses classical pipelines and unadapted deep stereo models on both synchronic and diachronic settings. Fine-tuning on temporally diverse images, together with monocular priors, proves essential for enabling 3D reconstruction from previously incompatible acquisition dates. Left image (winter) Right image (autumn) DSM geometry Ours (1.23 m) Zero-shot (3.99 m) LiDAR GT Figure 1. Output geometry for a winter-autumn image pair from Omaha (OMA 331 test scene). Our method recovers accurate geometry despite the diachronic nature of the pair, exhibiting strong appearance changes, which cause existing zero-shot methods to fail. Missing values due to perspective shown in black. Mean altitude error in parentheses; lower is better.
Autonomous UAV forestry operations require robust depth estimation with strong cross-domain generalization, yet existing evaluations focus on urban and indoor scenarios, leaving a critical gap for vegetation-dense environments. We present the first systematic zero-shot evaluation of eight stereo methods spanning iterative refinement, foundation model, diffusion-based, and 3D CNN paradigms. All methods use officially released pretrained weights (trained on Scene Flow) and are evaluated on four standard benchmarks (ETH3D, KITTI 2012/2015, Middlebury) plus a novel 5,313-pair Canterbury Tree Branches dataset ($1920 \times 1080$). Results reveal scene-dependent patterns: foundation models excel on structured scenes (BridgeDepth: 0.23 px on ETH3D; DEFOM: 4.65 px on Middlebury), while iterative methods show variable cross-benchmark performance (IGEV++: 0.36 px on ETH3D but 6.77 px on Middlebury; IGEV: 0.33 px on ETH3D but 4.99 px on Middlebury). Qualitative evaluation on the Tree Branches dataset establishes DEFOM as the gold-standard baseline for vegetation depth estimation, with superior cross-domain consistency (consistently ranking 1st-2nd across benchmarks, average rank 1.75). DEFOM predictions will serve as pseudo-ground-truth for future benchmarking.
Stereo vision between images faces a range of challenges, including occlusions, motion, and camera distortions, across applications in autonomous driving, robotics, and face analysis. Due to parameter sensitivity, further complications arise for stereo matching with sparse features, such as facial landmarks. To overcome this ill-posedness and enable unsupervised sparse matching, we consider line constraints of the camera geometry from an optimal transport (OT) viewpoint. Formulating camera-projected points as (half)lines, we propose the use of the classical epipolar distance as well as a 3D ray distance to quantify matching quality. Employing these distances as a cost function of a (partial) OT problem, we arrive at efficiently solvable assignment problems. Moreover, we extend our approach to unsupervised object matching by formulating it as a hierarchical OT problem. The resulting algorithms allow for efficient feature and object matching, as demonstrated in our numerical experiments. Here, we focus on applications in facial analysis, where we aim to match distinct landmarking conventions.
Immersive spatial audio has become increasingly critical for applications ranging from AR/VR to home entertainment and automotive sound systems. However, existing generative methods remain constrained to low-dimensional formats such as binaural audio and First-Order Ambisonics (FOA). Binaural rendering is inherently limited to headphone playback, while FOA suffers from spatial aliasing and insufficient resolution for high-frequency. To overcome these limitations, we introduce ImmersiveFlow, the first end-to-end generative framework that directly synthesizes discrete 7.1.4 format spatial audio from stereo input. ImmersiveFlow leverages Flow Matching to learn trajectories from stereo inputs to multichannel spatial features within a pretrained VAE latent space. At inference, the Flow Matching model predicted latent features are decoded by the VAE and converted into the final 7.1.4 waveform. Comprehensive objective and subjective evaluations demonstrate that our method produces perceptually rich sound fields and enhanced externalization, significantly outperforming traditional upmixing techniques. Code implementations and audio samples are provided at: https://github.com/violet-audio/ImmersiveFlow.
This paper presents an investigation of vision transformer learning for multi-view geometry tasks, such as optical flow estimation, by fine-tuning video foundation models. Unlike previous methods that involve custom architectural designs and task-specific pretraining, our research finds that general-purpose models pretrained on videos can be readily transferred to multi-view problems with minimal adaptation. The core insight is that general-purpose attention between patches learns temporal and spatial information for geometric reasoning. We demonstrate that appending a linear decoder to the Transformer backbone produces satisfactory results, and iterative refinement can further elevate performance to stateof-the-art levels. This conceptually simple approach achieves top cross-dataset generalization results for optical flow estimation with end-point error (EPE) of 0.69, 1.78, and 3.15 on the Sintel clean, Sintel final, and KITTI datasets, respectively. Our method additionally establishes a new record on the online test benchmark with EPE values of 0.79, 1.88, and F1 value of 3.79. Applications to 3D depth estimation and stereo matching also show strong performance, illustrating the versatility of video-pretrained models in addressing geometric vision tasks.
Stereo foundation models achieve strong zero-shot generalization but remain computationally prohibitive for real-time applications. Efficient stereo architectures, on the other hand, sacrifice robustness for speed and require costly per-domain fine-tuning. To bridge this gap, we present Fast-FoundationStereo, a family of architectures that achieve, for the first time, strong zero-shot generalization at real-time frame rate. We employ a divide-and-conquer acceleration strategy with three components: (1) knowledge distillation to compress the hybrid backbone into a single efficient student; (2) blockwise neural architecture search for automatically discovering optimal cost filtering designs under latency budgets, reducing search complexity exponentially; and (3) structured pruning for eliminating redundancy in the iterative refinement module. Furthermore, we introduce an automatic pseudo-labeling pipeline used to curate 1.4M in-the-wild stereo pairs to supplement synthetic training data and facilitate knowledge distillation. The resulting model can run over 10x faster than FoundationStereo while closely matching its zero-shot accuracy, thus establishing a new state-of-the-art among real-time methods. Project page: https://nvlabs.github.io/Fast-FoundationStereo/




Multi-view 3D object detection is a fundamental task in autonomous driving perception, where achieving a balance between detection accuracy and computational efficiency remains crucial. Sparse query-based 3D detectors efficiently aggregate object-relevant features from multi-view images through a set of learnable queries, offering a concise and end-to-end detection paradigm. Building on this foundation, MV2D leverages 2D detection results to provide high-quality object priors for query initialization, enabling higher precision and recall. However, the inherent depth ambiguity in single-frame 2D detections still limits the accuracy of 3D query generation. To address this issue, we propose StereoMV2D, a unified framework that integrates temporal stereo modeling into the 2D detection-guided multi-view 3D detector. By exploiting cross-temporal disparities of the same object across adjacent frames, StereoMV2D enhances depth perception and refines the query priors, while performing all computations efficiently within 2D regions of interest (RoIs). Furthermore, a dynamic confidence gating mechanism adaptively evaluates the reliability of temporal stereo cues through learning statistical patterns derived from the inter-frame matching matrix together with appearance consistency, ensuring robust detection under object appearance and occlusion. Extensive experiments on the nuScenes and Argoverse 2 datasets demonstrate that StereoMV2D achieves superior detection performance without incurring significant computational overhead. Code will be available at https://github.com/Uddd821/StereoMV2D.
Though deep neural models adopted to realize the perception of autonomous driving have proven vulnerable to adversarial examples, known attacks often leverage 2D patches and target mostly monocular perception. Therefore, the effectiveness of Physical Adversarial Examples (PAEs) on stereo-based binocular depth estimation remains largely unexplored. To this end, we propose the first texture-enabled physical adversarial attack against stereo matching models in the context of autonomous driving. Our method employs a 3D PAE with global camouflage texture rather than a local 2D patch-based one, ensuring both visual consistency and attack effectiveness across different viewpoints of stereo cameras. To cope with the disparity effect of these cameras, we also propose a new 3D stereo matching rendering module that allows the PAE to be aligned with real-world positions and headings in binocular vision. We further propose a novel merging attack that seamlessly blends the target into the environment through fine-grained PAE optimization. It has significantly enhanced stealth and lethality upon existing hiding attacks that fail to get seamlessly merged into the background. Extensive evaluations show that our PAEs can successfully fool the stereo models into producing erroneous depth information.
We consider the problem of active 3D imaging using single-shot structured light systems, which are widely employed in commercial 3D sensing devices such as Apple Face ID and Intel RealSense. Traditional structured light methods typically decode depth correspondences through pixel-domain matching algorithms, resulting in limited robustness under challenging scenarios like occlusions, fine-structured details, and non-Lambertian surfaces. Inspired by recent advances in neural feature matching, we propose a learning-based structured light decoding framework that performs robust correspondence matching within feature space rather than the fragile pixel domain. Our method extracts neural features from the projected patterns and captured infrared (IR) images, explicitly incorporating their geometric priors by building cost volumes in feature space, achieving substantial performance improvements over pixel-domain decoding approaches. To further enhance depth quality, we introduce a depth refinement module that leverages strong priors from large-scale monocular depth estimation models, improving fine detail recovery and global structural coherence. To facilitate effective learning, we develop a physically-based structured light rendering pipeline, generating nearly one million synthetic pattern-image pairs with diverse objects and materials for indoor settings. Experiments demonstrate that our method, trained exclusively on synthetic data with multiple structured light patterns, generalizes well to real-world indoor environments, effectively processes various pattern types without retraining, and consistently outperforms both commercial structured light systems and passive stereo RGB-based depth estimation methods. Project page: https://namisntimpot.github.io/NSLweb/.