Abstract:Event-based vision, inspired by the human visual system, offers transformative capabilities such as low latency, high dynamic range, and reduced power consumption. This paper presents a comprehensive survey of event cameras, tracing their evolution over time. It introduces the fundamental principles of event cameras, compares them with traditional frame cameras, and highlights their unique characteristics and operational differences. The survey covers various event camera models from leading manufacturers, key technological milestones, and influential research contributions. It explores diverse application areas across different domains and discusses essential real-world and synthetic datasets for research advancement. Additionally, the role of event camera simulators in testing and development is discussed. This survey aims to consolidate the current state of event cameras and inspire further innovation in this rapidly evolving field. To support the research community, a GitHub page (https://github.com/chakravarthi589/Event-based-Vision_Resources) categorizes past and future research articles and consolidates valuable resources.
Abstract:Equivariant neural networks have been widely used in a variety of applications due to their ability to generalize well in tasks where the underlying data symmetries are known. Despite their successes, such networks can be difficult to optimize and require careful hyperparameter tuning to train successfully. In this work, we propose a novel framework for improving the optimization of such models by relaxing the hard equivariance constraint during training: We relax the equivariance constraint of the network's intermediate layers by introducing an additional non-equivariance term that we progressively constrain until we arrive at an equivariant solution. By controlling the magnitude of the activation of the additional relaxation term, we allow the model to optimize over a larger hypothesis space containing approximate equivariant networks and converge back to an equivariant solution at the end of training. We provide experimental results on different state-of-the-art network architectures, demonstrating how this training framework can result in equivariant models with improved generalization performance.
Abstract:Presently, neural networks are widely employed to accurately estimate 2D displacements and associated uncertainties from Inertial Measurement Unit (IMU) data that can be integrated into stochastic filter networks like the Extended Kalman Filter (EKF) as measurements and uncertainties for the update step in the filter. However, such neural approaches overlook symmetry which is a crucial inductive bias for model generalization. This oversight is notable because (i) physical laws adhere to symmetry principles when considering the gravity axis, meaning there exists the same transformation for both the physical entity and the resulting trajectory, and (ii) displacements should remain equivariant to frame transformations when the inertial frame changes. To address this, we propose a subequivariant framework by: (i) deriving fundamental layers such as linear and nonlinear layers for a subequivariant network, designed to handle sequences of vectors and scalars, (ii) employing the subequivariant network to predict an equivariant frame for the sequence of inertial measurements. This predicted frame can then be utilized for extracting invariant features through projection, which are integrated with arbitrary network architectures, (iii) transforming the invariant output by frame transformation to obtain equivariant displacements and covariances. We demonstrate the effectiveness and generalization of our Equivariant Framework on a filter-based approach with TLIO architecture for TLIO and Aria datasets, and an end-to-end deep learning approach with RONIN architecture for RONIN, RIDI and OxIOD datasets.
Abstract:We show that many perception tasks, from visual recognition, semantic segmentation, optical flow, depth estimation to vocalization discrimination, are highly redundant functions of their input data. Images or spectrograms, projected into different subspaces, formed by orthogonal bases in pixel, Fourier or wavelet domains, can be used to solve these tasks remarkably well regardless of whether it is the top subspace where data varies the most, some intermediate subspace with moderate variability--or the bottom subspace where data varies the least. This phenomenon occurs because different subspaces have a large degree of redundant information relevant to the task.
Abstract:Current optical flow and point-tracking methods rely heavily on synthetic datasets. Event cameras are novel vision sensors with advantages in challenging visual conditions, but state-of-the-art frame-based methods cannot be easily adapted to event data due to the limitations of current event simulators. We introduce a novel self-supervised loss combining the Contrast Maximization framework with a non-linear motion prior in the form of pixel-level trajectories and propose an efficient solution to solve the high-dimensional assignment problem between non-linear trajectories and events. Their effectiveness is demonstrated in two scenarios: In dense continuous-time motion estimation, our method improves the zero-shot performance of a synthetically trained model on the real-world dataset EVIMO2 by 29%. In optical flow estimation, our method elevates a simple UNet to achieve state-of-the-art performance among self-supervised methods on the DSEC optical flow benchmark. Our code is available at https://github.com/tub-rip/MotionPriorCMax.
Abstract:The goal of this paper is to address the problem of \textit{global} point cloud registration (PCR) i.e., finding the optimal alignment between point clouds irrespective of the initial poses of the scans. This problem is notoriously challenging for classical optimization methods due to computational constraints. First, we show that state-of-the-art deep learning methods suffer from huge performance degradation when the point clouds are arbitrarily placed in space. We propose that \textit{equivariant deep learning} should be utilized for solving this task and we characterize the specific type of bi-equivariance of PCR. Then, we design BiEquiformer a novel and scalable \textit{bi-equivariant} pipeline i.e. equivariant to the independent transformations of the input point clouds. While a naive approach would process the point clouds independently we design expressive bi-equivariant layers that fuse the information from both point clouds. This allows us to extract high-quality superpoint correspondences and in turn, robust point-cloud registration. Extensive comparisons against state-of-the-art methods show that our method achieves comparable performance in the canonical setting and superior performance in the robust setting in both the 3DMatch and the challenging low-overlap 3DLoMatch dataset.
Abstract:We introduce 4D Motion Scaffolds (MoSca), a neural information processing system designed to reconstruct and synthesize novel views of dynamic scenes from monocular videos captured casually in the wild. To address such a challenging and ill-posed inverse problem, we leverage prior knowledge from foundational vision models, lift the video data to a novel Motion Scaffold (MoSca) representation, which compactly and smoothly encodes the underlying motions / deformations. The scene geometry and appearance are then disentangled from the deformation field, and are encoded by globally fusing the Gaussians anchored onto the MoSca and optimized via Gaussian Splatting. Additionally, camera poses can be seamlessly initialized and refined during the dynamic rendering process, without the need for other pose estimation tools. Experiments demonstrate state-of-the-art performance on dynamic rendering benchmarks.
Abstract:Large-scale robotic policies trained on data from diverse tasks and robotic platforms hold great promise for enabling general-purpose robots; however, reliable generalization to new environment conditions remains a major challenge. Toward addressing this challenge, we propose a novel approach for uncertainty-aware deployment of pre-trained language-conditioned imitation learning agents. Specifically, we use temperature scaling to calibrate these models and exploit the calibrated model to make uncertainty-aware decisions by aggregating the local information of candidate actions. We implement our approach in simulation using three such pre-trained models, and showcase its potential to significantly enhance task completion rates. The accompanying code is accessible at the link: https://github.com/BobWu1998/uncertainty_quant_all.git
Abstract:We propose TRAM, a two-stage method to reconstruct a human's global trajectory and motion from in-the-wild videos. TRAM robustifies SLAM to recover the camera motion in the presence of dynamic humans and uses the scene background to derive the motion scale. Using the recovered camera as a metric-scale reference frame, we introduce a video transformer model (VIMO) to regress the kinematic body motion of a human. By composing the two motions, we achieve accurate recovery of 3D humans in the world space, reducing global motion errors by 60% from prior work. https://yufu-wang.github.io/tram4d/
Abstract:We propose a novel test-time optimization approach for efficiently and robustly tracking any pixel at any time in a video. The latest state-of-the-art optimization-based tracking technique, OmniMotion, requires a prohibitively long optimization time, rendering it impractical for downstream applications. OmniMotion is sensitive to the choice of random seeds, leading to unstable convergence. To improve efficiency and robustness, we introduce a novel invertible deformation network, CaDeX++, which factorizes the function representation into a local spatial-temporal feature grid and enhances the expressivity of the coupling blocks with non-linear functions. While CaDeX++ incorporates a stronger geometric bias within its architectural design, it also takes advantage of the inductive bias provided by the vision foundation models. Our system utilizes monocular depth estimation to represent scene geometry and enhances the objective by incorporating DINOv2 long-term semantics to regulate the optimization process. Our experiments demonstrate a substantial improvement in training speed (more than \textbf{10 times} faster), robustness, and accuracy in tracking over the SoTA optimization-based method OmniMotion.