What is Pose Estimation? Pose estimation is a computer vision task to detect and track the position and orientation of a person or an object, given an image or video.
Papers and Code
May 05, 2025
Abstract:Accurate dietary monitoring is essential for promoting healthier eating habits. A key area of research is how people interact and consume food using utensils and hands. By tracking their position and orientation, it is possible to estimate the volume of food being consumed, or monitor eating behaviours, highly useful insights into nutritional intake that can be more reliable than popular methods such as self-reporting. Hence, this paper implements a system that analyzes stationary video feed of people eating, using 6D pose estimation to track hand and spoon movements to capture spatial position and orientation. In doing so, we examine the performance of two state-of-the-art (SOTA) video object segmentation (VOS) models, both quantitatively and qualitatively, and identify main sources of error within the system.
Via

May 05, 2025
Abstract:Two-dimensional pose estimation plays a crucial role in fingerprint recognition by facilitating global alignment and reduce pose-induced variations. However, existing methods are still unsatisfactory when handling with large angle or small area inputs. These limitations are particularly pronounced on fingerprints captured by under-screen fingerprint sensors in smartphones. In this paper, we present a novel dual-modal input based network for under-screen fingerprint pose estimation. Our approach effectively integrates two distinct yet complementary modalities: texture details extracted from ridge patches through the under-screen fingerprint sensor, and rough contours derived from capacitive images obtained via the touch screen. This collaborative integration endows our network with more comprehensive and discriminative information, substantially improving the accuracy and stability of pose estimation. A decoupled probability distribution prediction task is designed, instead of the traditional supervised forms of numerical regression or heatmap voting, to facilitate the training process. Additionally, we incorporate a Mixture of Experts (MoE) based feature fusion mechanism and a relationship driven cross-domain knowledge transfer strategy to further strengthen feature extraction and fusion capabilities. Extensive experiments are conducted on several public datasets and two private datasets. The results indicate that our method is significantly superior to previous state-of-the-art (SOTA) methods and remarkably boosts the recognition ability of fingerprint recognition algorithms. Our code is available at https://github.com/XiongjunGuan/DRACO.
Via

May 05, 2025
Abstract:This study introduces Dance of Fireworks, an interactive system designed to combat sedentary health risks by enhancing engagement in radio calisthenics. Leveraging mobile device cameras and lightweight pose estimation (PoseNet/TensorFlow Lite), the system extracts body keypoints, computes joint angles, and compares them with standardized motions to deliver real-time corrective feedback. To incentivize participation, it dynamically maps users' movements (such as joint angles and velocity) to customizable fireworks animations, rewarding improved accuracy with richer visual effects. Experiments involving 136 participants demonstrated a significant reduction in average joint angle errors from 21.3 degrees to 9.8 degrees (p < 0.01) over four sessions, with 93.4 percent of users affirming its exercise-promoting efficacy and 85.4 percent praising its entertainment value. The system operates without predefined motion templates or specialised hardware, enabling seamless integration into office environments. Future enhancements will focus on improving pose recognition accuracy, reducing latency, and adding features such as multiplayer interaction and music synchronisation. This work presents a cost-effective, engaging solution to promote physical activity in sedentary populations.
* 21 pages, 13 figures
Via

May 05, 2025
Abstract:We introduce Corr2Distrib, the first correspondence-based method which estimates a 6D camera pose distribution from an RGB image, explaining the observations. Indeed, symmetries and occlusions introduce visual ambiguities, leading to multiple valid poses. While a few recent methods tackle this problem, they do not rely on local correspondences which, according to the BOP Challenge, are currently the most effective way to estimate a single 6DoF pose solution. Using correspondences to estimate a pose distribution is not straightforward, since ambiguous correspondences induced by visual ambiguities drastically decrease the performance of PnP. With Corr2Distrib, we turn these ambiguities into an advantage to recover all valid poses. Corr2Distrib first learns a symmetry-aware representation for each 3D point on the object's surface, characterized by a descriptor and a local frame. This representation enables the generation of 3DoF rotation hypotheses from single 2D-3D correspondences. Next, we refine these hypotheses into a 6DoF pose distribution using PnP and pose scoring. Our experimental evaluations on complex non-synthetic scenes show that Corr2Distrib outperforms state-of-the-art solutions for both pose distribution estimation and single pose estimation from an RGB image, demonstrating the potential of correspondences-based approaches.
* 8 pages, 5 figures
Via

May 05, 2025
Abstract:Integrating artificial intelligence (AI) and stochastic technologies into the mobile robot navigation and control (MRNC) framework while adhering to rigorous safety standards presents significant challenges. To address these challenges, this paper proposes a comprehensively integrated MRNC framework for skid-steer wheeled mobile robots (SSWMRs), in which all components are actively engaged in real-time execution. The framework comprises: 1) a LiDAR-inertial simultaneous localization and mapping (SLAM) algorithm for estimating the current pose of the robot within the built map; 2) an effective path-following control system for generating desired linear and angular velocity commands based on the current pose and the desired pose; 3) inverse kinematics for transferring linear and angular velocity commands into left and right side velocity commands; and 4) a robust AI-driven (RAID) control system incorporating a radial basis function network (RBFN) with a new adaptive algorithm to enforce in-wheel actuation systems to track each side motion commands. To further meet safety requirements, the proposed RAID control within the MRNC framework of the SSWMR constrains AI-generated tracking performance within predefined overshoot and steady-state error limits, while ensuring robustness and system stability by compensating for modeling errors, unknown RBF weights, and external forces. Experimental results verify the proposed MRNC framework performance for a 4,836 kg SSWMR operating on soft terrain.
* This paper has been submitted in the IEEE CDC 2025 for potential
presentation
Via

May 04, 2025
Abstract:Human Pose Estimation (HPE) is increasingly important for applications like virtual reality and motion analysis, yet current methods struggle with balancing accuracy, computational efficiency, and reliable uncertainty quantification (UQ). Traditional regression-based methods assume fixed distributions, which might lead to poor UQ. Heatmap-based methods effectively model the output distribution using likelihood heatmaps, however, they demand significant resources. To address this, we propose Continuous Flow Residual Estimation (CFRE), an integration of Continuous Normalizing Flows (CNFs) into regression-based models, which allows for dynamic distribution adaptation. Through extensive experiments, we show that CFRE leads to better accuracy and uncertainty quantification with retained computational efficiency on both 2D and 3D human pose estimation tasks.
* Accepted by SCIA2025
Via

May 04, 2025
Abstract:Relative pose estimation, a fundamental computer vision problem, has been extensively studied for decades. Existing methods either estimate and decompose the essential matrix or directly estimate the rotation and translation to obtain the solution. In this article, we break the mold by tackling this traditional problem with a novel birotation solution. We first introduce three basis transformations, each associated with a geometric metric to quantify the distance between the relative pose to be estimated and its corresponding basis transformation. Three energy functions, designed based on these metrics, are then minimized on the Riemannian manifold $\mathrm{SO(3)}$ by iteratively updating the two rotation matrices. The two rotation matrices and the basis transformation corresponding to the minimum energy are ultimately utilized to recover the relative pose. Extensive quantitative and qualitative evaluations across diverse relative pose estimation tasks demonstrate the superior performance of our proposed birotation solution. Source code, demo video, and datasets will be available at \href{https://mias.group/birotation-solution}{mias.group/birotation-solution} upon publication.
Via

May 03, 2025
Abstract:The advent of 6G is expected to enable many use cases which may rely on accurate knowledge of the location and orientation of user equipment (UE). The conventional localization methods suffer from limitations such as synchronization and high power consumption required for multiple active anchors. This can be mitigated by utilizing a large dimensional passive reconfigurable intelligent surface (RIS). This paper presents a novel low-complexity approach for the estimation of 5D pose (i.e. 3D location and 2D orientation) of a UE in near-field RIS-assisted multiple-input multiple-output (MIMO) systems. The proposed approach exploits the symmetric arrangement of uniform planar array of RIS and uniform linear array of UE to decouple the 5D problem into five 1D sub-problems. Further, we solve these sub-problems using a total least squares ESPRIT inspired approach to obtain closed-form solutions.
Via

May 04, 2025
Abstract:Federated causal inference enables multi-site treatment effect estimation without sharing individual-level data, offering a privacy-preserving solution for real-world evidence generation. However, data heterogeneity across sites, manifested in differences in covariate, treatment, and outcome, poses significant challenges for unbiased and efficient estimation. In this paper, we present a comprehensive review and theoretical analysis of federated causal effect estimation across both binary/continuous and time-to-event outcomes. We classify existing methods into weight-based strategies and optimization-based frameworks and further discuss extensions including personalized models, peer-to-peer communication, and model decomposition. For time-to-event outcomes, we examine federated Cox and Aalen-Johansen models, deriving asymptotic bias and variance under heterogeneity. Our analysis reveals that FedProx-style regularization achieves near-optimal bias-variance trade-offs compared to naive averaging and meta-analysis. We review related software tools and conclude by outlining opportunities, challenges, and future directions for scalable, fair, and trustworthy federated causal inference in distributed healthcare systems.
Via

May 03, 2025
Abstract:Recent advancements in autonomous driving (AD) systems have highlighted the potential of world models in achieving robust and generalizable performance across both ordinary and challenging driving conditions. However, a key challenge remains: precise and flexible camera pose control, which is crucial for accurate viewpoint transformation and realistic simulation of scene dynamics. In this paper, we introduce PosePilot, a lightweight yet powerful framework that significantly enhances camera pose controllability in generative world models. Drawing inspiration from self-supervised depth estimation, PosePilot leverages structure-from-motion principles to establish a tight coupling between camera pose and video generation. Specifically, we incorporate self-supervised depth and pose readouts, allowing the model to infer depth and relative camera motion directly from video sequences. These outputs drive pose-aware frame warping, guided by a photometric warping loss that enforces geometric consistency across synthesized frames. To further refine camera pose estimation, we introduce a reverse warping step and a pose regression loss, improving viewpoint precision and adaptability. Extensive experiments on autonomous driving and general-domain video datasets demonstrate that PosePilot significantly enhances structural understanding and motion reasoning in both diffusion-based and auto-regressive world models. By steering camera pose with self-supervised depth, PosePilot sets a new benchmark for pose controllability, enabling physically consistent, reliable viewpoint synthesis in generative world models.
* 8 pages, 3 figures
Via
