Abstract:This article presents a motion planning and control framework for flexible robotic manipulators, integrating deep reinforcement learning (DRL) with a nonlinear partial differential equation (PDE) controller. Unlike conventional approaches that focus solely on control, we demonstrate that the desired trajectory significantly influences endpoint vibrations. To address this, a DRL motion planner, trained using the soft actor-critic (SAC) algorithm, generates optimized trajectories that inherently minimize vibrations. The PDE nonlinear controller then computes the required torques to track the planned trajectory while ensuring closed-loop stability using Lyapunov analysis. The proposed methodology is validated through both simulations and real-world experiments, demonstrating superior vibration suppression and tracking accuracy compared to traditional methods. The results underscore the potential of combining learning-based motion planning with model-based control for enhancing the precision and stability of flexible robotic manipulators.
Abstract:In human-in-the-loop systems such as teleoperation, especially those involving heavy-duty manipulators, achieving high task performance requires both robust control and strong human engagement. This paper presents a bilateral teleoperation framework that enhances the operator's Sense of Embodiment (SoE), specifically, the senses of agency and self-location, through an immersive virtual reality interface and distributed haptic feedback via an exoskeleton. To support this embodiment and stablish high level of motion and force transparency, we develop a force-sensorless, robust control architecture that tackles input nonlinearities, master-slave asymmetries, unknown uncertainties, and arbitrary time delays. A human-robot augmented dynamic model is integrated into the control loop to enhance human-adaptability of the controller. Theoretical analysis confirms semi-global uniform ultimate boundedness of the closed-loop system. Extensive real-world experiments demonstrate high accuracy tracking under up to 1:13 motion scaling and 1:1000 force scaling, showcasing the significance of the results. Additionally, the stability-transparency tradeoff for motion tracking and force reflection-tracking is establish up to 150 ms of one-way fix and time-varying communication delay. The results of user study with 10 participants (9 male and 1 female) demonstrated that the system can imply a good level of SoE (76.4%), at the same time is very user friendly with no gender limitation. These results are significant given the scale and weight of the heavy-duty manipulators.
Abstract:Integrating artificial intelligence (AI) and stochastic technologies into the mobile robot navigation and control (MRNC) framework while adhering to rigorous safety standards presents significant challenges. To address these challenges, this paper proposes a comprehensively integrated MRNC framework for skid-steer wheeled mobile robots (SSWMRs), in which all components are actively engaged in real-time execution. The framework comprises: 1) a LiDAR-inertial simultaneous localization and mapping (SLAM) algorithm for estimating the current pose of the robot within the built map; 2) an effective path-following control system for generating desired linear and angular velocity commands based on the current pose and the desired pose; 3) inverse kinematics for transferring linear and angular velocity commands into left and right side velocity commands; and 4) a robust AI-driven (RAID) control system incorporating a radial basis function network (RBFN) with a new adaptive algorithm to enforce in-wheel actuation systems to track each side motion commands. To further meet safety requirements, the proposed RAID control within the MRNC framework of the SSWMR constrains AI-generated tracking performance within predefined overshoot and steady-state error limits, while ensuring robustness and system stability by compensating for modeling errors, unknown RBF weights, and external forces. Experimental results verify the proposed MRNC framework performance for a 4,836 kg SSWMR operating on soft terrain.
Abstract:Virtual Decomposition Control (VDC) has emerged as a powerful modular framework for real-world robotic control, particularly in contact-rich tasks. Despite its widespread use, VDC has been fundamentally limited to first-order impedance allocation, inherently neglecting the desired inertia due to the mathematical complexity of second-order behavior allocation. However, inertia is crucial, not only for shaping dynamic responses during contact phases, but also for enabling smooth acceleration and deceleration in trajectory tracking. Motivated by the growing demand for high-fidelity interaction control, this work introduces, for the first time in the VDC framework, a method to realize second-order impedance behavior. By redefining the required end-effector velocity and introducing a required acceleration and a pseudo-impedance term, we achieve second-order impedance control while preserving the modularity of VDC. Rigorous stability analysis confirms the robustness of the proposed controller. Experimental validation on a 7-degree-of-freedom haptic exoskeleton demonstrates superior tracking and contact performance compared to first-order methods. Notably, incorporating inertia enables stable interaction with environments up to 70% stiffer, highlighting the effectiveness of the approach in real-world contact-rich scenarios.
Abstract:Undesired lateral and longitudinal wheel slippage can disrupt a mobile robot's heading angle, traction, and, eventually, desired motion. This issue makes the robotization and accurate modeling of heavy-duty machinery very challenging because the application primarily involves off-road terrains, which are susceptible to uneven motion and severe slippage. As a step toward robotization in skid-steering heavy-duty robot (SSHDR), this paper aims to design an innovative robust model-free control system developed by neural networks to strongly stabilize the robot dynamics in the presence of a broad range of potential wheel slippages. Before the control design, the dynamics of the SSHDR are first investigated by mathematically incorporating slippage effects, assuming that all functional modeling terms of the system are unknown to the control system. Then, a novel tracking control framework to guarantee global exponential stability of the SSHDR is designed as follows: 1) the unknown modeling of wheel dynamics is approximated using radial basis function neural networks (RBFNNs); and 2) a new adaptive law is proposed to compensate for slippage effects and tune the weights of the RBFNNs online during execution. Simulation and experimental results verify the proposed tracking control performance of a 4,836 kg SSHDR operating on slippery terrain.
Abstract:Recent advances in visual 6D pose estimation of objects using deep neural networks have enabled novel ways of vision-based control for heavy-duty robotic applications. In this study, we present a pipeline for the precise tool positioning of heavy-duty, long-reach (HDLR) manipulators using advanced machine vision. A camera is utilized in the so-called eye-in-hand configuration to estimate directly the poses of a tool and a target object of interest (OOI). Based on the pose error between the tool and the target, along with motion-based calibration between the camera and the robot, precise tool positioning can be reliably achieved using conventional robotic modeling and control methods prevalent in the industry. The proposed methodology comprises orientation and position alignment based on the visually estimated OOI poses, whereas camera-to-robot calibration is conducted based on motion utilizing visual SLAM. The methods seek to avert the inaccuracies resulting from rigid-body--based kinematics of structurally flexible HDLR manipulators via image-based algorithms. To train deep neural networks for OOI pose estimation, only synthetic data are utilized. The methods are validated in a real-world setting using an HDLR manipulator with a 5 m reach. The experimental results demonstrate that an image-based average tool positioning error of less than 2 mm along the non-depth axes is achieved, which facilitates a new way to increase the task flexibility and automation level of non-rigid HDLR manipulators.
Abstract:This paper presents the analytic modeling of mobile heavy-duty manipulators with actively articulated suspension and its optimal control to maximize its static and dynamic stabilization. By adopting the screw theory formalism, we consider the suspension mechanism as a rigid multibody composed of two closed kinematic chains. This mechanical modeling allows us to compute the spatial inertial parameters of the whole platform as a function of the suspension's linear actuators through the articulated-body inertia method. Our solution enhances the computation accuracy of the wheels' reaction normal forces by providing an exact solution for the center of mass and inertia tensor of the mobile manipulator. Moreover, these inertial parameters and the normal forces are used to define metrics of both static and dynamic stability of the mobile manipulator and formulate a nonlinear programming problem that optimizes such metrics to generate an optimal stability motion that prevents the platform's overturning, such optimal position of the actuator is tracked with a state-feedback hydraulic valve control. We demonstrate our method's efficiency in terms of C++ computational speed, accuracy and performance improvement by simulating a 7 degrees-of-freedom heavy-duty parallel-serial mobile manipulator with four wheels and actively articulated suspension.
Abstract:Electrification, a key strategy in combating climate change, is transforming industries, and off-highway machines (OHM) will be next to transition from combustion engines and hydraulic actuation to sustainable fully electrified machines. Electromechanical linear actuators (EMLAs) offer superior efficiency, safety, and reduced maintenance, and they unlock vast potential for high-performance autonomous operations. However, a key challenge lies in optimizing the kinematic parameters of OHMs' on-board manipulators for EMLA integration to exploit the full capabilities of actuation systems and maximize their performance. This work addresses this challenge by delving into the structural optimization of a prevalent closed kinematic chain configuration commonly employed in OHM manipulators. Our approach aims to retain the manipulator's existing capabilities while reducing its energy expenditure, paving the way for a greener future in industrial automation, one in which sustainable and high-performing robotized OHMs can evolve. The feasibility of our methodology is validated through simulation results obtained on a commercially available parallel-serial heavy-duty manipulator mounted on a battery electric vehicle. The results demonstrate the efficacy of our approach in modifying kinematic parameters to facilitate the replacement of conventional hydraulic actuators with EMLAs, all while minimizing the overall energy consumption of the system.
Abstract:Heavy-duty operations, typically performed using heavy-duty hydraulic manipulators (HHMs), are susceptible to environmental contact due to tracking errors or sudden environmental changes. Therefore, beyond precise control design, it is crucial that the manipulator be resilient to potential impacts without relying on contact-force sensors, which mostly cannot be utilized. This paper proposes a novel force-sensorless robust impact-resilient controller for a generic 6-degree-of-freedom (DoF) HHM constituting from anthropomorphic arm and spherical wrist mechanisms. The scheme consists of a neuroadaptive subsystem-based impedance controller, which is designed to ensure both accurate tracking of position and orientation with stabilization of HHMs upon contact, along with a novel generalized momentum observer, which is for the first time introduced in Pl\"ucker coordinate, to estimate the impact force. Finally, by leveraging the concepts of virtual stability and virtual power flow, the semi-global uniformly ultimately boundedness of the entire system is assured. To demonstrate the efficacy and versatility of the proposed method, extensive experiments were conducted using a generic 6-DoF industrial HHM. The experimental results confirm the exceptional performance of the designed method by achieving a subcentimeter tracking accuracy and by 80% reduction of impact of the contact.
Abstract:This paper presents a new geometric and recursive algorithm for analytically computing the forward dynamics of heavy-duty parallel-serial mechanisms. Our solution relies on expressing the dynamics of a class of linearly-actuated parallel mechanism to a lower dimensional dual Lie algebra to find an analytical solution for the inverse dynamics problem. Thus, by applying the articulated-body inertias method, we successfully provide analytic expressions for the total wrench in the linear-actuator reference frame, the linear acceleration of the actuator, and the total wrench exerted in the base reference frame of the closed loop. This new formulation allows to backwardly project and assemble inertia matrices and wrench bias of multiple closed-loops mechanisms. The final algorithm holds an O(n) algorithmic complexity, where $n$ is the number of degrees of freedom (DoF). We provide accuracy results to demonstrate its efficiency with 1-DoF closed-loop mechanism and 4-DoF manipulator composed by serial and parallel mechanisms. Additionally, we release a URDF multi-DoF code for this recursive algorithm.