Joint base station (BS) association and beam selection in multi-UAV aerial corridors constitutes a challenging radio resource management (RRM) problem. It is driven by high-dimensional action spaces, need for substantial overhead to acquire global channel state information (CSI), rapidly varying propagation channels, and stringent latency requirements. Conventional combinatorial optimization methods, while near-optimal, are computationally prohibitive for real-time operation in such dynamic environments. While learning-based approaches can mitigate computational complexity and CSI overhead, the need for extensive site-specific (SS) datasets for model training remains a key challenge. To address these challenges, we develop a Digital Twin (DT)-enabled two-stage optimization framework that couples physics-based beam gain modeling with DRL for scalable online decision-making. In the first stage, a channel twin (CT) is constructed using a high-fidelity ray-tracing solver with geo-spatial contexts, and network information to capture SS propagation characteristics, and dual annealing algorithm is employed to precompute optimal transmission beam directions. In the second stage, a Multi-Head Proximal Policy Optimization (MH-PPO) agent, equipped with a scalable multi-head actor-critic architecture, is trained on the DT-generated channel dataset to directly map complex channel and beam states to jointly execute UAV-BS-beam association decisions. The proposed PPO agent achieves a 44%-121% improvement over DQN and 249%-807% gain over traditional heuristic based optimization schemes in a dense UAV scenario, while reducing inference latency by several orders of magnitude. These results demonstrate that DT-driven training pipelines can deliver high-performance, low-latency RRM policies tailored to SS deployments suitable for real-time resource management in next-generation aerial corridor networks.
While Open Set Semantic Mapping and 3D Semantic Scene Graphs (3DSSGs) are established paradigms in robotic perception, deploying them effectively to support high-level reasoning in large-scale, real-world environments remains a significant challenge. Most existing approaches decouple perception from representation, treating the scene graph as a derivative layer generated post hoc. This limits both consistency and scalability. In contrast, we propose a mapping architecture where the 3DSSG serves as the foundational backend, acting as the primary knowledge representation for the entire mapping process. Our approach leverages prior work on incremental scene graph prediction to infer and update the graph structure in real-time as the environment is explored. This ensures that the map remains topologically consistent and computationally efficient, even during extended operations in large-scale settings. By maintaining an explicit, spatially grounded representation that supports both flat and hierarchical topologies, we bridge the gap between sub-symbolic raw sensor data and high-level symbolic reasoning. Consequently, this provides a stable, verifiable structure that knowledge-driven frameworks, ranging from knowledge graphs and ontologies to Large Language Models (LLMs), can directly exploit, enabling agents to operate with enhanced interpretability, trustworthiness, and alignment to human concepts.
Visually-guided acoustic highlighting seeks to rebalance audio in alignment with the accompanying video, creating a coherent audio-visual experience. While visual saliency and enhancement have been widely studied, acoustic highlighting remains underexplored, often leading to misalignment between visual and auditory focus. Existing approaches use discriminative models, which struggle with the inherent ambiguity in audio remixing, where no natural one-to-one mapping exists between poorly-balanced and well-balanced audio mixes. To address this limitation, we reframe this task as a generative problem and introduce a Conditional Flow Matching (CFM) framework. A key challenge in iterative flow-based generation is that early prediction errors -- in selecting the correct source to enhance -- compound over steps and push trajectories off-manifold. To address this, we introduce a rollout loss that penalizes drift at the final step, encouraging self-correcting trajectories and stabilizing long-range flow integration. We further propose a conditioning module that fuses audio and visual cues before vector field regression, enabling explicit cross-modal source selection. Extensive quantitative and qualitative evaluations show that our method consistently surpasses the previous state-of-the-art discriminative approach, establishing that visually-guided audio remixing is best addressed through generative modeling.
Information retrieval has long focused on ranking documents by semantic relatedness. Yet many real-world information needs demand more: enforcement of logical constraints, multi-step inference, and synthesis of multiple pieces of evidence. Addressing these requirements is, at its core, a problem of reasoning. Across AI communities, researchers are developing diverse solutions for the problem of reasoning, from inference-time strategies and post-training of LLMs, to neuro-symbolic systems, Bayesian and probabilistic frameworks, geometric representations, and energy-based models. These efforts target the same problem: to move beyond pattern-matching systems toward structured, verifiable inference. However, they remain scattered across disciplines, making it difficult for IR researchers to identify the most relevant ideas and opportunities. To help navigate the fragmented landscape of research in reasoning, this tutorial first articulates a working definition of reasoning within the context of information retrieval and derives from it a unified analytical framework. The framework maps existing approaches along axes that reflect the core components of the definition. By providing a comprehensive overview of recent approaches and mapping current methods onto the defined axes, we expose their trade-offs and complementarities, highlight where IR can benefit from cross-disciplinary advances, and illustrate how retrieval process itself can play a central role in broader reasoning systems. The tutorial will equip participants with both a conceptual framework and practical guidance for enhancing reasoning-capable IR systems, while situating IR as a domain that both benefits and contributes to the broader development of reasoning methodologies.
Retinal diseases spanning a broad spectrum can be effectively identified and diagnosed using complementary signals from multimodal data. However, multimodal diagnosis in ophthalmic practice is typically challenged in terms of data heterogeneity, potential invasiveness, registration complexity, and so on. As such, a unified framework that integrates multimodal data synthesis and fusion is proposed for retinal disease classification and grading. Specifically, the synthesized multimodal data incorporates fundus fluorescein angiography (FFA), multispectral imaging (MSI), and saliency maps that emphasize latent lesions as well as optic disc/cup regions. Parallel models are independently trained to learn modality-specific representations that capture cross-pathophysiological signatures. These features are then adaptively calibrated within and across modalities to perform information pruning and flexible integration according to downstream tasks. The proposed learning system is thoroughly interpreted through visualizations in both image and feature spaces. Extensive experiments on two public datasets demonstrated the superiority of our approach over state-of-the-art ones in the tasks of multi-label classification (F1-score: 0.683, AUC: 0.953) and diabetic retinopathy grading (Accuracy:0.842, Kappa: 0.861). This work not only enhances the accuracy and efficiency of retinal disease screening but also offers a scalable framework for data augmentation across various medical imaging modalities.
Large language models (LLMs) often struggle with knowledge-intensive tasks due to hallucinations and outdated parametric knowledge. While Retrieval-Augmented Generation (RAG) addresses this by integrating external corpora, its effectiveness is limited by fragmented information in unstructured domain documents. Graph-augmented RAG (GraphRAG) emerged to enhance contextual reasoning through structured knowledge graphs, yet paradoxically underperforms vanilla RAG in real-world scenarios, exhibiting significant accuracy drops and prohibitive latency despite gains on complex queries. We identify the rigid application of GraphRAG to all queries, regardless of complexity, as the root cause. To resolve this, we propose an efficient and adaptive GraphRAG framework called EA-GraphRAG that dynamically integrates RAG and GraphRAG paradigms through syntax-aware complexity analysis. Our approach introduces: (i) a syntactic feature constructor that parses each query and extracts a set of structural features; (ii) a lightweight complexity scorer that maps these features to a continuous complexity score; and (iii) a score-driven routing policy that selects dense RAG for low-score queries, invokes graph-based retrieval for high-score queries, and applies complexity-aware reciprocal rank fusion to handle borderline cases. Extensive experiments on a comprehensive benchmark, consisting of two single-hop and two multi-hop QA benchmarks, demonstrate that our EA-GraphRAG significantly improves accuracy, reduces latency, and achieves state-of-the-art performance in handling mixed scenarios involving both simple and complex queries.
Computational optimal transport (OT) offers a principled framework for generative modeling. Neural OT methods, which use neural networks to learn an OT map (or potential) from data in an amortized way, can be evaluated out of sample after training, but existing approaches are tailored to Euclidean geometry. Extending neural OT to high-dimensional Riemannian manifolds remains an open challenge. In this paper, we prove that any method for OT on manifolds that produces discrete approximations of transport maps necessarily suffers from the curse of dimensionality: achieving a fixed accuracy requires a number of parameters that grows exponentially with the manifold dimension. Motivated by this limitation, we introduce Riemannian Neural OT (RNOT) maps, which are continuous neural-network parameterizations of OT maps on manifolds that avoid discretization and incorporate geometric structure by construction. Under mild regularity assumptions, we prove that RNOT maps approximate Riemannian OT maps with sub-exponential complexity in the dimension. Experiments on synthetic and real datasets demonstrate improved scalability and competitive performance relative to discretization-based baselines.
This paper addresses optimal decoding strategies in lossy compression where the assumed distribution for compressor design mismatches the actual (true) distribution of the source. This problem has immediate relevance in standardized communication systems where the decoder acquires side information or priors about the true distribution that are unavailable to the fixed encoder. We formally define the mismatched quantization problem, demonstrating that the optimal reconstruction rule, termed generative decompression, aligns with classical Bayesian estimation by taking the conditional expectation under the true distribution given the quantization indices and adapting it to fixed-encoder constraints. This strategy effectively performs a generative Bayesian correction on the decoder side, strictly outperforming the conventional centroid rule. We extend this framework to transmission over noisy channels, deriving a robust soft-decoding rule that quantifies the inefficiency of standard modular source--channel separation architectures under mismatch. Furthermore, we generalize the approach to task-oriented decoding, showing that the optimal strategy shifts from conditional mean estimation to maximum a posteriori (MAP) detection. Experimental results on Gaussian sources and deep-learning-based semantic classification demonstrate that generative decompression closes a vast majority of the performance gap to the ideal joint-optimization benchmark, enabling adaptive, high-fidelity reconstruction without modifying the encoder.
Integrating hard constraints into deep learning is essential for safety-critical systems. Yet existing constructive layers that project predictions onto constraint boundaries face a fundamental bottleneck: gradient saturation. By collapsing exterior points onto lower-dimensional surfaces, standard orthogonal projections induce rank-deficient Jacobians, which nullify gradients orthogonal to active constraints and hinder optimization. We introduce Soft-Radial Projection, a differentiable reparameterization layer that circumvents this issue through a radial mapping from Euclidean space into the interior of the feasible set. This construction guarantees strict feasibility while preserving a full-rank Jacobian almost everywhere, thereby preventing the optimization stalls typical of boundary-based methods. We theoretically prove that the architecture retains the universal approximation property and empirically show improved convergence behavior and solution quality over state-of-the-art optimization- and projection-based baselines.
We propose a data-driven sparse recovery framework for hybrid spherical linear microphone arrays using singular value decomposition (SVD) of the transfer operator. The SVD yields orthogonal microphone and field modes, reducing to spherical harmonics (SH) in the SMA-only case, while incorporating LMAs introduces complementary modes beyond SH. Modal analysis reveals consistent divergence from SH across frequency, confirming the improved spatial selectivity. Experiments in reverberant conditions show reduced energy-map mismatch and angular error across frequency, distance, and source count, outperforming SMA-only and direct concatenation. The results demonstrate that SVD-modal processing provides a principled and unified treatment of hybrid arrays for robust sparse sound-field reconstruction.