The Moore-Penrose Pseudo-inverse (PInv) serves as the fundamental solution for linear systems. In this paper, we propose a natural generalization of PInv to the nonlinear regime in general and to neural networks in particular. We introduce Surjective Pseudo-invertible Neural Networks (SPNN), a class of architectures explicitly designed to admit a tractable non-linear PInv. The proposed non-linear PInv and its implementation in SPNN satisfy fundamental geometric properties. One such property is null-space projection or "Back-Projection", $x' = x + A^\dagger(y-Ax)$, which moves a sample $x$ to its closest consistent state $x'$ satisfying $Ax=y$. We formalize Non-Linear Back-Projection (NLBP), a method that guarantees the same consistency constraint for non-linear mappings $f(x)=y$ via our defined PInv. We leverage SPNNs to expand the scope of zero-shot inverse problems. Diffusion-based null-space projection has revolutionized zero-shot solving for linear inverse problems by exploiting closed-form back-projection. We extend this method to non-linear degradations. Here, "degradation" is broadly generalized to include any non-linear loss of information, spanning from optical distortions to semantic abstractions like classification. This approach enables zero-shot inversion of complex degradations and allows precise semantic control over generative outputs without retraining the diffusion prior.
Vision Foundation Models (VFMs) have achieved remarkable success when applied to various downstream 2D tasks. Despite their effectiveness, they often exhibit a critical lack of 3D awareness. To this end, we introduce Splat and Distill, a framework that instills robust 3D awareness into 2D VFMs by augmenting the teacher model with a fast, feed-forward 3D reconstruction pipeline. Given 2D features produced by a teacher model, our method first lifts these features into an explicit 3D Gaussian representation, in a feedforward manner. These 3D features are then ``splatted" onto novel viewpoints, producing a set of novel 2D feature maps used to supervise the student model, ``distilling" geometrically grounded knowledge. By replacing slow per-scene optimization of prior work with our feed-forward lifting approach, our framework avoids feature-averaging artifacts, creating a dynamic learning process where the teacher's consistency improves alongside that of the student. We conduct a comprehensive evaluation on a suite of downstream tasks, including monocular depth estimation, surface normal estimation, multi-view correspondence, and semantic segmentation. Our method significantly outperforms prior works, not only achieving substantial gains in 3D awareness but also enhancing the underlying semantic richness of 2D features. Project page is available at https://davidshavin4.github.io/Splat-and-Distill/
Out-of-distribution (OOD) detection, which maps high-dimensional data into a scalar OOD score, is critical for the reliable deployment of machine learning models. A key challenge in recent research is how to effectively leverage and aggregate token embeddings from language models to obtain the OOD score. In this work, we propose AP-OOD, a novel OOD detection method for natural language that goes beyond simple average-based aggregation by exploiting token-level information. AP-OOD is a semi-supervised approach that flexibly interpolates between unsupervised and supervised settings, enabling the use of limited auxiliary outlier data. Empirically, AP-OOD sets a new state of the art in OOD detection for text: in the unsupervised setting, it reduces the FPR95 (false positive rate at 95% true positives) from 27.84% to 4.67% on XSUM summarization, and from 77.08% to 70.37% on WMT15 En-Fr translation.
Screenshot-to-code generation aims to translate user interface screenshots into executable frontend code that faithfully reproduces the target layout and style. Existing multimodal large language models perform this mapping directly from screenshots but are trained without observing the visual outcomes of their generated code. In contrast, human developers iteratively render their implementation, compare it with the design, and learn how visual differences relate to code changes. Inspired by this process, we propose VisRefiner, a training framework that enables models to learn from visual differences between rendered predictions and reference designs. We construct difference-aligned supervision that associates visual discrepancies with corresponding code edits, allowing the model to understand how appearance variations arise from implementation changes. Building on this, we introduce a reinforcement learning stage for self-refinement, where the model improves its generated code by observing both the rendered output and the target design, identifying their visual differences, and updating the code accordingly. Experiments show that VisRefiner substantially improves single-step generation quality and layout fidelity, while also endowing models with strong self-refinement ability. These results demonstrate the effectiveness of learning from visual differences for advancing screenshot-to-code generation.
Softmax Self-Attention (SSA) is a key component of Transformer architectures. However, when utilised within skipless architectures, which aim to improve representation learning, recent work has highlighted the inherent instability of SSA due to inducing rank collapse and poorly-conditioned Jacobians. In this work, we design a novel attention mechanism: Orthogonal Self-Attention (OSA), which aims to bypass these issues with SSA, in order to allow for (non-causal) Transformers without skip connections and normalisation layers to be more easily trained. In particular, OSA parametrises the attention matrix to be orthogonal via mapping a skew-symmetric matrix, formed from query-key values, through the matrix exponential. We show that this can be practically implemented, by exploiting the low-rank structure of our query-key values, resulting in the computational complexity and memory cost of OSA scaling linearly with sequence length. Furthermore, we derive an initialisation scheme for which we prove ensures that the Jacobian of OSA is well-conditioned.
Flow and diffusion models produce high-quality samples, but adapting them to user preferences or constraints post-training remains costly and brittle, a challenge commonly called reward alignment. We argue that efficient reward alignment should be a property of the generative model itself, not an afterthought, and redesign the model for adaptability. We propose "Diamond Maps", stochastic flow map models that enable efficient and accurate alignment to arbitrary rewards at inference time. Diamond Maps amortize many simulation steps into a single-step sampler, like flow maps, while preserving the stochasticity required for optimal reward alignment. This design makes search, sequential Monte Carlo, and guidance scalable by enabling efficient and consistent estimation of the value function. Our experiments show that Diamond Maps can be learned efficiently via distillation from GLASS Flows, achieve stronger reward alignment performance, and scale better than existing methods. Our results point toward a practical route to generative models that can be rapidly adapted to arbitrary preferences and constraints at inference time.
Controllable video generation has emerged as a versatile tool for autonomous driving, enabling realistic synthesis of traffic scenarios. However, existing methods depend on control signals at inference time to guide the generative model towards temporally consistent generation of dynamic objects, limiting their utility as scalable and generalizable data engines. In this work, we propose Localized Semantic Alignment (LSA), a simple yet effective framework for fine-tuning pre-trained video generation models. LSA enhances temporal consistency by aligning semantic features between ground-truth and generated video clips. Specifically, we compare the output of an off-the-shelf feature extraction model between the ground-truth and generated video clips localized around dynamic objects inducing a semantic feature consistency loss. We fine-tune the base model by combining this loss with the standard diffusion loss. The model fine-tuned for a single epoch with our novel loss outperforms the baselines in common video generation evaluation metrics. To further test the temporal consistency in generated videos we adapt two additional metrics from object detection task, namely mAP and mIoU. Extensive experiments on nuScenes and KITTI datasets show the effectiveness of our approach in enhancing temporal consistency in video generation without the need for external control signals during inference and any computational overheads.
Merging finetuned Large Language Models (LLMs) has become increasingly important for integrating diverse capabilities into a single unified model. However, prevailing model merging methods rely on linear arithmetic in Euclidean space, which often destroys the intrinsic geometric properties of pretrained weights, such as hyperspherical energy. To address this, we propose Orthogonal Model Merging (OrthoMerge), a method that performs merging operations on the Riemannian manifold formed by the orthogonal group to preserve the geometric structure of the model's weights. By mapping task-specific orthogonal matrices learned by Orthogonal Finetuning (OFT) to the Lie algebra, OrthoMerge enables a principled yet efficient integration that takes into account both the direction and intensity of adaptations. In addition to directly leveraging orthogonal matrices obtained by OFT, we further extend this approach to general models finetuned with non-OFT methods (i.e., low-rank finetuning, full finetuning) via an Orthogonal-Residual Decoupling strategy. This technique extracts the orthogonal components of expert models by solving the orthogonal Procrustes problem, which are then merged on the manifold of the orthogonal group, while the remaining linear residuals are processed through standard additive merging. Extensive empirical results demonstrate the effectiveness of OrthoMerge in mitigating catastrophic forgetting and maintaining model performance across diverse tasks.
Indoor micro-aerial vehicles (MAVs) are increasingly used for tasks that require close proximity to people, yet practitioners lack practical methods to tune motion limits based on measured impact risk. We present an end-to-end, open toolchain that converts benchtop impact tests into deployable safety governors for drones. First, we describe a compact and replicable impact rig and protocol for capturing force-time profiles across drone classes and contact surfaces. Second, we provide data-driven models that map pre-impact speed to impulse and contact duration, enabling direct computation of speed bounds for a target force limit. Third, we release scripts and a ROS2 node that enforce these bounds online and log compliance, with support for facility-specific policies. We validate the workflow on multiple commercial off-the-shelf quadrotors and representative indoor assets, demonstrating that the derived governors preserve task throughput while meeting force constraints specified by safety stakeholders. Our contribution is a practical bridge from measured impacts to runtime limits, with shareable datasets, code, and a repeatable process that teams can adopt to certify indoor MAV operations near humans.
Contrastive Language-Image Pre-training (CLIP) has achieved widely applications in various computer vision tasks, e.g., text-to-image generation, Image-Text retrieval and Image captioning. However, CLIP suffers from high memory and computation cost, which prohibits its usage to the resource-limited application scenarios. Existing CLIP compression methods typically reduce the size of pre-trained CLIP weights by selecting their subset as weight inheritance for further retraining via mask optimization or important weight measurement. However, these select-based weight inheritance often compromises the feature presentation ability, especially on the extreme compression. In this paper, we propose a novel mapping-based CLIP compression framework, CLIP-Map. It leverages learnable matrices to map and combine pretrained weights by Full-Mapping with Kronecker Factorization, aiming to preserve as much information from the original weights as possible. To mitigate the optimization challenges introduced by the learnable mapping, we propose Diagonal Inheritance Initialization to reduce the distribution shifting problem for efficient and effective mapping learning. Extensive experimental results demonstrate that the proposed CLIP-Map outperforms select-based frameworks across various compression ratios, with particularly significant gains observed under high compression settings.