Abstract:Large language models (LLMs) are revolutionizing education, with LLM-based agents playing a key role in simulating student behavior. A major challenge in student simulation is modeling the diverse learning patterns of students at various cognitive levels. However, current LLMs, typically trained as ``helpful assistants'', target at generating perfect responses. As a result, they struggle to simulate students with diverse cognitive abilities, as they often produce overly advanced answers, missing the natural imperfections that characterize student learning and resulting in unrealistic simulations. To address this issue, we propose a training-free framework for student simulation. We begin by constructing a cognitive prototype for each student using a knowledge graph, which captures their understanding of concepts from past learning records. This prototype is then mapped to new tasks to predict student performance. Next, we simulate student solutions based on these predictions and iteratively refine them using a beam search method to better replicate realistic mistakes. To validate our approach, we construct the \texttt{Student\_100} dataset, consisting of $100$ students working on Python programming and $5,000$ learning records. Experimental results show that our method consistently outperforms baseline models, achieving $100\%$ improvement in simulation accuracy.
Abstract:Knowledge Tracing (KT) is a core component of Intelligent Tutoring Systems, modeling learners' knowledge state to predict future performance and provide personalized learning support. Traditional KT models assume that learners' learning abilities remain relatively stable over short periods or change in predictable ways based on prior performance. However, in reality, learners' abilities change irregularly due to factors like cognitive fatigue, motivation, and external stress -- a task introduced, which we refer to as Real-time Learning Pattern Adjustment (RLPA). Existing KT models, when faced with RLPA, lack sufficient adaptability, because they fail to timely account for the dynamic nature of different learners' evolving learning patterns. Current strategies for enhancing adaptability rely on retraining, which leads to significant overfitting and high time overhead issues. To address this, we propose Cuff-KT, comprising a controller and a generator. The controller assigns value scores to learners, while the generator generates personalized parameters for selected learners. Cuff-KT controllably adapts to data changes fast and flexibly without fine-tuning. Experiments on five datasets from different subjects demonstrate that Cuff-KT significantly improves the performance of five KT models with different structures under intra- and inter-learner shifts, with an average relative increase in AUC of 10% and 4%, respectively, at a negligible time cost, effectively tackling RLPA task. Our code and datasets are fully available at https://github.com/zyy-2001/Cuff-KT.
Abstract:The scaling law of Large Language Models (LLMs) reveals a power-law relationship, showing diminishing return on performance as model scale increases. While training LLMs from scratch is resource-intensive, fine-tuning a pre-trained model for specific tasks has become a practical alternative. Full fine-tuning (FFT) achieves strong performance; however, it is computationally expensive and inefficient. Parameter-efficient fine-tuning (PEFT) methods, like LoRA, have been proposed to address these challenges by freezing the pre-trained model and adding lightweight task-specific modules. LoRA, in particular, has proven effective, but its application to multi-task scenarios is limited by interference between tasks. Recent approaches, such as Mixture-of-Experts (MOE) and asymmetric LoRA, have aimed to mitigate these issues but still struggle with sample scarcity and noise interference due to their fixed structure. In response, we propose CoLA, a more flexible LoRA architecture with an efficient initialization scheme, and introduces three collaborative strategies to enhance performance by better utilizing the quantitative relationships between matrices $A$ and $B$. Our experiments demonstrate the effectiveness and robustness of CoLA, outperforming existing PEFT methods, especially in low-sample scenarios. Our data and code are fully publicly available at https://github.com/zyy-2001/CoLA.
Abstract:Automated GUI agents aims to facilitate user interaction by automatically performing complex tasks in digital environments, such as web, mobile, desktop devices. It receives textual task instruction and GUI description to generate executable actions (\emph{e.g.}, click) and operation boxes step by step. Training a GUI agent mainly involves grounding and planning stages, in which the GUI grounding focuses on finding the execution coordinates according to the task, while the planning stage aims to predict the next action based on historical actions. However, previous work suffers from the limitations of insufficient training data for GUI grounding, as well as the ignorance of backtracking historical behaviors for GUI planning. To handle the above challenges, we propose ScaleTrack, a training framework by scaling grounding and backtracking planning for automated GUI agents. We carefully collected GUI samples of different synthesis criterions from a wide range of sources, and unified them into the same template for training GUI grounding models. Moreover, we design a novel training strategy that predicts the next action from the current GUI image, while also backtracking the historical actions that led to the GUI image. In this way, ScaleTrack explains the correspondence between GUI images and actions, which effectively describes the evolution rules of the GUI environment. Extensive experimental results demonstrate the effectiveness of ScaleTrack. Data and code will be available at url.
Abstract:Despite recent progress in video generation, producing videos that adhere to physical laws remains a significant challenge. Traditional diffusion-based methods struggle to extrapolate to unseen physical conditions (eg, velocity) due to their reliance on data-driven approximations. To address this, we propose to integrate symbolic reasoning and reinforcement learning to enforce physical consistency in video generation. We first introduce the Diffusion Timestep Tokenizer (DDT), which learns discrete, recursive visual tokens by recovering visual attributes lost during the diffusion process. The recursive visual tokens enable symbolic reasoning by a large language model. Based on it, we propose the Phys-AR framework, which consists of two stages: The first stage uses supervised fine-tuning to transfer symbolic knowledge, while the second stage applies reinforcement learning to optimize the model's reasoning abilities through reward functions based on physical conditions. Our approach allows the model to dynamically adjust and improve the physical properties of generated videos, ensuring adherence to physical laws. Experimental results demonstrate that PhysAR can generate videos that are physically consistent.
Abstract:MLLM reasoning has drawn widespread research for its excellent problem-solving capability. Current reasoning methods fall into two types: PRM, which supervises the intermediate reasoning steps, and ORM, which supervises the final results. Recently, DeepSeek-R1 has challenged the traditional view that PRM outperforms ORM, which demonstrates strong generalization performance using an ORM method (i.e., GRPO). However, current MLLM's GRPO algorithms still struggle to handle challenging and complex multimodal reasoning tasks (e.g., mathematical reasoning). In this work, we reveal two problems that impede the performance of GRPO on the MLLM: Low data utilization and Text-bias. Low data utilization refers to that GRPO cannot acquire positive rewards to update the MLLM on difficult samples, and text-bias is a phenomenon that the MLLM bypasses image condition and solely relies on text condition for generation after GRPO training. To tackle these problems, this work proposes Hint-GRPO that improves data utilization by adaptively providing hints for samples of varying difficulty, and text-bias calibration that mitigates text-bias by calibrating the token prediction logits with image condition in test-time. Experiment results on three base MLLMs across eleven datasets demonstrate that our proposed methods advance the reasoning capability of original MLLM by a large margin, exhibiting superior performance to existing MLLM reasoning methods. Our code is available at https://github.com/hqhQAQ/Hint-GRPO.
Abstract:Automated Program Repair (APR) is a task to automatically generate patches for the buggy code. However, most research focuses on generating correct patches while ignoring the consistency between the fixed code and the original buggy code. How to conduct adaptive bug fixing and generate patches with minimal modifications have seldom been investigated. To bridge this gap, we first introduce a novel task, namely AdaPR (Adaptive Program Repair). We then propose a two-stage approach AdaPatcher (Adaptive Patch Generator) to enhance program repair while maintaining the consistency. In the first stage, we utilize a Bug Locator with self-debug learning to accurately pinpoint bug locations. In the second stage, we train a Program Modifier to ensure consistency between the post-modified fixed code and the pre-modified buggy code. The Program Modifier is enhanced with a location-aware repair learning strategy to generate patches based on identified buggy lines, a hybrid training strategy for selective reference and an adaptive preference learning to prioritize fewer changes. The experimental results show that our approach outperforms a set of baselines by a large margin, validating the effectiveness of our two-stage framework for the newly proposed AdaPR task.
Abstract:In the realm of Intelligent Tutoring System (ITS), the accurate assessment of students' knowledge states through Knowledge Tracing (KT) is crucial for personalized learning. However, due to data bias, $\textit{i.e.}$, the unbalanced distribution of question groups ($\textit{e.g.}$, concepts), conventional KT models are plagued by cognitive bias, which tends to result in cognitive underload for overperformers and cognitive overload for underperformers. More seriously, this bias is amplified with the exercise recommendations by ITS. After delving into the causal relations in the KT models, we identify the main cause as the confounder effect of students' historical correct rate distribution over question groups on the student representation and prediction score. Towards this end, we propose a Disentangled Knowledge Tracing (DisKT) model, which separately models students' familiar and unfamiliar abilities based on causal effects and eliminates the impact of the confounder in student representation within the model. Additionally, to shield the contradictory psychology ($\textit{e.g.}$, guessing and mistaking) in the students' biased data, DisKT introduces a contradiction attention mechanism. Furthermore, DisKT enhances the interpretability of the model predictions by integrating a variant of Item Response Theory. Experimental results on 11 benchmarks and 3 synthesized datasets with different bias strengths demonstrate that DisKT significantly alleviates cognitive bias and outperforms 16 baselines in evaluation accuracy.
Abstract:Cognitive Diagnosis Models (CDMs) are designed to assess students' cognitive states by analyzing their performance across a series of exercises. However, existing CDMs often struggle with diagnosing infrequent students and exercises due to a lack of rich prior knowledge. With the advancement in large language models (LLMs), which possess extensive domain knowledge, their integration into cognitive diagnosis presents a promising opportunity. Despite this potential, integrating LLMs with CDMs poses significant challenges. LLMs are not well-suited for capturing the fine-grained collaborative interactions between students and exercises, and the disparity between the semantic space of LLMs and the behavioral space of CDMs hinders effective integration. To address these issues, we propose a novel Knowledge-enhanced Cognitive Diagnosis (KCD) framework, which is a model-agnostic framework utilizing LLMs to enhance CDMs and compatible with various CDM architectures. The KCD framework operates in two stages: LLM Diagnosis and Cognitive Level Alignment. In the LLM Diagnosis stage, both students and exercises are diagnosed to achieve comprehensive and detailed modeling. In the Cognitive Level Alignment stage, we bridge the gap between the CDMs' behavioral space and the LLMs' semantic space using contrastive learning and mask-reconstruction approaches. Experiments on several real-world datasets demonstrate the effectiveness of our proposed framework.
Abstract:Automatic sleep staging based on electroencephalography (EEG) and electromyography (EMG) signals is an important aspect of sleep-related research. Current sleep staging methods suffer from two major drawbacks. First, there are limited information interactions between modalities in the existing methods. Second, current methods do not develop unified models that can handle different sources of input. To address these issues, we propose a novel sleep stage scoring model sDREAMER, which emphasizes cross-modality interaction and per-channel performance. Specifically, we develop a mixture-of-modality-expert (MoME) model with three pathways for EEG, EMG, and mixed signals with partially shared weights. We further propose a self-distillation training scheme for further information interaction across modalities. Our model is trained with multi-channel inputs and can make classifications on either single-channel or multi-channel inputs. Experiments demonstrate that our model outperforms the existing transformer-based sleep scoring methods for multi-channel inference. For single-channel inference, our model also outperforms the transformer-based models trained with single-channel signals.