Cognitive biases often shape human decisions. While large language models (LLMs) have been shown to reproduce well-known biases, a more critical question is whether LLMs can predict biases at the individual level and emulate the dynamics of biased human behavior when contextual factors, such as cognitive load, interact with these biases. We adapted three well-established decision scenarios into a conversational setting and conducted a human experiment (N=1100). Participants engaged with a chatbot that facilitates decision-making through simple or complex dialogues. Results revealed robust biases. To evaluate how LLMs emulate human decision-making under similar interactive conditions, we used participant demographics and dialogue transcripts to simulate these conditions with LLMs based on GPT-4 and GPT-5. The LLMs reproduced human biases with precision. We found notable differences between models in how they aligned human behavior. This has important implications for designing and evaluating adaptive, bias-aware LLM-based AI systems in interactive contexts.
Domain specific large language models are increasingly used to support patient education, triage, and clinical decision making in ophthalmology, making rigorous evaluation essential to ensure safety and accuracy. This study evaluated four small medical LLMs Meerkat-7B, BioMistral-7B, OpenBioLLM-8B, and MedLLaMA3-v20 in answering ophthalmology related patient queries and assessed the feasibility of LLM based evaluation against clinician grading. In this cross sectional study, 180 ophthalmology patient queries were answered by each model, generating 2160 responses. Models were selected for parameter sizes under 10 billion to enable resource efficient deployment. Responses were evaluated by three ophthalmologists of differing seniority and by GPT-4-Turbo using the S.C.O.R.E. framework assessing safety, consensus and context, objectivity, reproducibility, and explainability, with ratings assigned on a five point Likert scale. Agreement between LLM and clinician grading was assessed using Spearman rank correlation, Kendall tau statistics, and kernel density estimate analyses. Meerkat-7B achieved the highest performance with mean scores of 3.44 from Senior Consultants, 4.08 from Consultants, and 4.18 from Residents. MedLLaMA3-v20 performed poorest, with 25.5 percent of responses containing hallucinations or clinically misleading content, including fabricated terminology. GPT-4-Turbo grading showed strong alignment with clinician assessments overall, with Spearman rho of 0.80 and Kendall tau of 0.67, though Senior Consultants graded more conservatively. Overall, medical LLMs demonstrated potential for safe ophthalmic question answering, but gaps remained in clinical depth and consensus, supporting the feasibility of LLM based evaluation for large scale benchmarking and the need for hybrid automated and clinician review frameworks to guide safe clinical deployment.
Semantic textual similarity (STS) plays a crucial role in many natural language processing tasks. While extensively studied in high-resource languages, STS remains challenging for under-resourced languages such as Slovak. This paper presents a comparative evaluation of sentence-level STS methods applied to Slovak, including traditional algorithms, supervised machine learning models, and third-party deep learning tools. We trained several machine learning models using outputs from traditional algorithms as features, with feature selection and hyperparameter tuning jointly guided by artificial bee colony optimization. Finally, we evaluated several third-party tools, including fine-tuned model by CloudNLP, OpenAI's embedding models, GPT-4 model, and pretrained SlovakBERT model. Our findings highlight the trade-offs between different approaches.
The way customers search for and choose products is changing with the rise of large language models (LLMs). LLM-based search, or generative engines, provides direct product recommendations to users, rather than traditional online search results that require users to explore options themselves. However, these recommendations are strongly influenced by the initial retrieval order of LLMs, which disadvantages small businesses and independent creators by limiting their visibility. In this work, we propose CORE, an optimization method that \textbf{C}ontrols \textbf{O}utput \textbf{R}ankings in g\textbf{E}nerative Engines for LLM-based search. Since the LLM's interactions with the search engine are black-box, CORE targets the content returned by search engines as the primary means of influencing output rankings. Specifically, CORE optimizes retrieved content by appending strategically designed optimization content to steer the ranking of outputs. We introduce three types of optimization content: string-based, reasoning-based, and review-based, demonstrating their effectiveness in shaping output rankings. To evaluate CORE in realistic settings, we introduce ProductBench, a large-scale benchmark with 15 product categories and 200 products per category, where each product is associated with its top-10 recommendations collected from Amazon's search interface. Extensive experiments on four LLMs with search capabilities (GPT-4o, Gemini-2.5, Claude-4, and Grok-3) demonstrate that CORE achieves an average Promotion Success Rate of \textbf{91.4\% @Top-5}, \textbf{86.6\% @Top-3}, and \textbf{80.3\% @Top-1}, across 15 product categories, outperforming existing ranking manipulation methods while preserving the fluency of optimized content.
Large Language Models (LLMs) have demonstrated remarkable proficiency in code generation and general reasoning, yet their capacity for autonomous multi-stage planning in high-dimensional, physically constrained environments remains an open research question. This study investigates the limits of current AI agents by evaluating them against the 12th Global Trajectory Optimization Competition (GTOC 12), a complex astrodynamics challenge requiring the design of a large-scale asteroid mining campaign. We adapt the MLE-Bench framework to the domain of orbital mechanics and deploy an AIDE-based agent architecture to autonomously generate and refine mission solutions. To assess performance beyond binary validity, we employ an "LLM-as-a-Judge" methodology, utilizing a rubric developed by domain experts to evaluate strategic viability across five structural categories. A comparative analysis of models, ranging from GPT-4-Turbo to reasoning-enhanced architectures like Gemini 2.5 Pro, and o3, reveals a significant trend: the average strategic viability score has nearly doubled in the last two years (rising from 9.3 to 17.2 out of 26). However, we identify a critical capability gap between strategy and execution. While advanced models demonstrate sophisticated conceptual understanding, correctly framing objective functions and mission architectures, they consistently fail at implementation due to physical unit inconsistencies, boundary condition errors, and inefficient debugging loops. We conclude that, while current LLMs often demonstrate sufficient knowledge and intelligence to tackle space science tasks, they remain limited by an implementation barrier, functioning as powerful domain facilitators rather than fully autonomous engineers.
LLM routing aims to achieve a favorable quality--cost trade-off by dynamically assigning easy queries to smaller models and harder queries to stronger ones. However, across both unimodal and multimodal settings, we uncover a pervasive yet underexplored failure mode in existing routers: as the user's cost budget increases, routers systematically default to the most capable and most expensive model even when cheaper models already suffice. As a result, current routers under-utilize small models, wasting computation and monetary cost and undermining the core promise of routing; we term this phenomenon routing collapse. We attribute routing collapse to an objective--decision mismatch: many routers are trained to predict scalar performance scores, whereas routing decisions ultimately depend on discrete comparisons among candidate models. Consequently, small prediction errors can flip relative orderings and trigger suboptimal selections. To bridge this gap, we propose EquiRouter, a decision-aware router that directly learns model rankings, restoring the role of smaller models and mitigating routing collapse. On RouterBench, EquiRouter reduces cost by about 17\% at GPT-4-level performance compared to the strongest prior router. Our code is available at https://github.com/AIGNLAI/EquiRouter.
Prior work on fairness in large language models (LLMs) has primarily focused on access-level behaviors such as refusals and safety filtering. However, equitable access does not ensure equitable interaction quality once a response is provided. In this paper, we conduct a controlled fairness audit examining how LLMs differ in tone, uncertainty, and linguistic framing across demographic identities after access is granted. Using a counterfactual prompt design, we evaluate GPT-4 and LLaMA-3.1-70B on career advice tasks while varying identity attributes along age, gender, and nationality. We assess access fairness through refusal analysis and measure interaction quality using automated linguistic metrics, including sentiment, politeness, and hedging. Identity-conditioned differences are evaluated using paired statistical tests. Both models exhibit zero refusal rates across all identities, indicating uniform access. Nevertheless, we observe systematic, model-specific disparities in interaction quality: GPT-4 expresses significantly higher hedging toward younger male users, while LLaMA exhibits broader sentiment variation across identity groups. These results show that fairness disparities can persist at the interaction level even when access is equal, motivating evaluation beyond refusal-based audits.
Transformers achieve remarkable performance across many domains, yet struggle with tasks requiring multi-hop relational reasoning over structured data. We analyze this limitation through circuit complexity: standard transformers are $\mathsf{TC}^0$-complete and require $Ω(k)$ layers for $k$-hop reasoning. We introduce RASA (Relation-Aware Sparse Attention), a minimal modification adding: (1) edge-type embeddings that inject relational structure into attention scores, and (2) sparse masking that restricts attention to graph-adjacent positions. While RASA has the same asymptotic depth requirements, sparse masking reduces the attention search space from $O(2^{n^2})$ to $O(2^m)$ patterns, and edge biases provide explicit relation routing. Empirically, on MetaQA (1/2/3-hop) and WebQuestionsSP, RASA outperforms standard transformers and matches GPT-4 at lower cost, with advantages growing with reasoning depth (+7.1 points on 3-hop). We do not claim formal learnability guarantees; the contribution is empirical validation that minimal structural modifications substantially improve multi-hop reasoning.
Image captioning (IC) refers to the automatic generation of natural language descriptions for images, with applications ranging from social media content generation to assisting individuals with visual impairments. While most research has been focused on English-based models, low-resource languages such as Brazilian Portuguese face significant challenges due to the lack of specialized datasets and models. Several studies create datasets by automatically translating existing ones to mitigate resource scarcity. This work addresses this gap by proposing a cross-native-translated evaluation of Transformer-based vision and language models for Brazilian Portuguese IC. We use a version of Flickr30K comprised of captions manually created by native Brazilian Portuguese speakers and compare it to a version with captions automatically translated from English to Portuguese. The experiments include a cross-context approach, where models trained on one dataset are tested on the other to assess the translation impact. Additionally, we incorporate attention maps for model inference interpretation and use the CLIP-Score metric to evaluate the image-description alignment. Our findings show that Swin-DistilBERTimbau consistently outperforms other models, demonstrating strong generalization across datasets. ViTucano, a Brazilian Portuguese pre-trained VLM, surpasses larger multilingual models (GPT-4o, LLaMa 3.2 Vision) in traditional text-based evaluation metrics, while GPT-4 models achieve the highest CLIP-Score, highlighting improved image-text alignment. Attention analysis reveals systematic biases, including gender misclassification, object enumeration errors, and spatial inconsistencies. The datasets and the models generated and analyzed during the current study are available in: https://github.com/laicsiifes/transformer-caption-ptbr.
As foundation models (FMs) approach human-level fluency, distinguishing synthetic from organic content has become a key challenge for Trustworthy Web Intelligence. This paper presents JudgeGPT and RogueGPT, a dual-axis framework that decouples "authenticity" from "attribution" to investigate the mechanisms of human susceptibility. Analyzing 918 evaluations across five FMs (including GPT-4 and Llama-2), we employ Structural Causal Models (SCMs) as a principal framework for formulating testable causal hypotheses about detection accuracy. Contrary to partisan narratives, we find that political orientation shows a negligible association with detection performance ($r=-0.10$). Instead, "fake news familiarity" emerges as a candidate mediator ($r=0.35$), suggesting that exposure may function as adversarial training for human discriminators. We identify a "fluency trap" where GPT-4 outputs (HumanMachineScore: 0.20) bypass Source Monitoring mechanisms, rendering them indistinguishable from human text. These findings suggest that "pre-bunking" interventions should target cognitive source monitoring rather than demographic segmentation to ensure trustworthy information ecosystems.