Autonomous underwater inspection of submerged pipelines is challenging due to confined geometries, turbidity, and the scarcity of reliable localization cues. This paper presents a minimal-sensing strategy that enables a free-swimming underwater robot to center itself and traverse a flooded pipe of known radius using only an IMU, a pressure sensor, and two sonars: a downward-facing single-beam sonar and a rotating 360 degree sonar. We introduce a computationally efficient method for extracting range estimates from single-beam sonar intensity data, enabling reliable wall detection in noisy and reverberant conditions. A closed-form geometric model leverages the two sonar ranges to estimate the pipe center, and an adaptive, confidence-weighted proportional-derivative (PD) controller maintains alignment during traversal. The system requires no Doppler velocity log, external tracking, or complex multi-sensor arrays. Experiments in a submerged 46 cm-diameter pipe using a Blue Robotics BlueROV2 heavy remotely operated vehicle demonstrate stable centering and successful full-pipe traversal despite ambient flow and structural deformations. These results show that reliable in-pipe navigation and inspection can be achieved with a lightweight, computationally efficient sensing and processing architecture, advancing the practicality of autonomous underwater inspection in confined environments.
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by grounding generation in external knowledge to improve factuality and reduce hallucinations. Yet most deployments assume a centralized corpus, which is infeasible in privacy aware domains where knowledge remains siloed. This motivates federated RAG (FedRAG), where a central LLM server collaborates with distributed silos without sharing raw documents. In context RAG violates this requirement by transmitting verbatim documents, whereas parametric RAG encodes documents into lightweight adapters that merge with a frozen LLM at inference, avoiding raw-text exchange. We adopt the parametric approach but face two unique challenges induced by FedRAG: high storage and communication from per-document adapters, and destructive aggregation caused by indiscriminately merging multiple adapters. We present FedMosaic, the first federated RAG framework built on parametric adapters. FedMosaic clusters semantically related documents into multi-document adapters with document-specific masks to reduce overhead while preserving specificity, and performs selective adapter aggregation to combine only relevance-aligned, nonconflicting adapters. Experiments show that FedMosaic achieves an average 10.9% higher accuracy than state-of-the-art methods in four categories, while lowering storage costs by 78.8% to 86.3% and communication costs by 91.4%, and never sharing raw documents.
Contemporary knowledge-based systems increasingly rely on multilingual emotion identification to support intelligent decision-making, yet they face major challenges due to emotional ambiguity and incomplete supervision. Emotion recognition from text is inherently uncertain because multiple emotional states often co-occur and emotion annotations are frequently missing or heterogeneous. Most existing multi-label emotion classification methods assume fully observed labels and rely on deterministic learning objectives, which can lead to biased learning and unreliable predictions under partial supervision. This paper introduces Reasoning under Ambiguity, an uncertainty-aware framework for multilingual multi-label emotion classification that explicitly aligns learning with annotation uncertainty. The proposed approach uses a shared multilingual encoder with language-specific optimization and an entropy-based ambiguity weighting mechanism that down-weights highly ambiguous training instances rather than treating missing labels as negative evidence. A mask-aware objective with positive-unlabeled regularization is further incorporated to enable robust learning under partial supervision. Experiments on English, Spanish, and Arabic emotion classification benchmarks demonstrate consistent improvements over strong baselines across multiple evaluation metrics, along with improved training stability, robustness to annotation sparsity, and enhanced interpretability.
Large Language Models (LLMs) face increasing threats from jailbreak attacks that bypass safety alignment. While prompt-based defenses such as Role-Oriented Prompts (RoP) and Task-Oriented Prompts (ToP) have shown effectiveness, the role of few-shot demonstrations in these defense strategies remains unclear. Prior work suggests that few-shot examples may compromise safety, but lacks investigation into how few-shot interacts with different system prompt strategies. In this paper, we conduct a comprehensive evaluation on multiple mainstream LLMs across four safety benchmarks (AdvBench, HarmBench, SG-Bench, XSTest) using six jailbreak attack methods. Our key finding reveals that few-shot demonstrations produce opposite effects on RoP and ToP: few-shot enhances RoP's safety rate by up to 4.5% through reinforcing role identity, while it degrades ToP's effectiveness by up to 21.2% through distracting attention from task instructions. Based on these findings, we provide practical recommendations for deploying prompt-based defenses in real-world LLM applications.
Online scams across email, short message services, and social media increasingly challenge everyday risk assessment, particularly as generative AI enables more fluent and context-aware deception. Although transformer-based detectors achieve strong predictive performance, their explanations are often opaque to non-experts or misaligned with model decisions. We propose VEXA, an evidence-grounded and persona-adaptive framework for generating learner-facing scam explanations by integrating GradientSHAP-based attribution with theory-informed vulnerability personas. Evaluation across multi-channel datasets shows that grounding explanations in detector-derived evidence improves semantic reliability without increasing linguistic complexity, while persona conditioning introduces interpretable stylistic variation without disrupting evidential alignment. These results reveal a key design insight: evidential grounding governs semantic correctness, whereas persona-based adaptation operates at the level of presentation under constraints of faithfulness. Together, VEXA demonstrates the feasibility of persona-adaptive, evidence-grounded explanations and provides design guidance for trustworthy, learner-facing security explanations in non-formal contexts.
The integration of reinforcement learning (RL) into large language models (LLMs) has opened new opportunities for recommender systems by eliciting reasoning and improving user preference modeling. However, RL-based LLM recommendation faces significant efficiency challenges, making full-data training costly. Existing data selection methods define sample value based on learnability or representativeness, yet their loss- or gradient-driven or dataset coverage-driven criteria often misalign with RL learning dynamics, resulting in suboptimal performance. To address this, we propose MiniRec, a data selection framework tailored for RL-based LLM recommendation. MiniRec evaluates sample learnability using key RL signals -- rewards -- pruning samples that are too easy (too high reward) or too difficult (consistently low reward). It assesses representativeness by aligning sample gradients with the approximated "ideal" global RL optimization trajectory, selecting samples that mainly drive model updates, and it also enforces diversity to reduce redundancy. Combined with a curriculum learning strategy from easy to hard samples, MiniRec significantly reduces training cost while largely preserving performance. Extensive experiments demonstrate MiniRec's effectiveness, highlighting the importance of reward-aligned, trajectory-informed data selection in RL-based LLM recommendation.
Monocular video human mesh recovery faces fundamental challenges in maintaining metric consistency and temporal stability due to inherent depth ambiguities and scale uncertainties. While existing methods rely primarily on RGB features and temporal smoothing, they struggle with depth ordering, scale drift, and occlusion-induced instabilities. We propose a comprehensive depth-guided framework that achieves metric-aware temporal consistency through three synergistic components: A Depth-Guided Multi-Scale Fusion module that adaptively integrates geometric priors with RGB features via confidence-aware gating; A Depth-guided Metric-Aware Pose and Shape (D-MAPS) estimator that leverages depth-calibrated bone statistics for scale-consistent initialization; A Motion-Depth Aligned Refinement (MoDAR) module that enforces temporal coherence through cross-modal attention between motion dynamics and geometric cues. Our method achieves superior results on three challenging benchmarks, demonstrating significant improvements in robustness against heavy occlusion and spatial accuracy while maintaining computational efficiency.
Neural networks achieve strong empirical performance, but robustness concerns still hinder deployment in safety-critical applications. Formal verification provides robustness guarantees, but current methods face a scalability-completeness trade-off. We propose a hybrid verifier in a branch-and-bound (BaB) framework that efficiently tightens both upper and lower bounds until an $ε-$global optimum is reached or early stop is triggered. The key is an exact nonlinear program with complementarity constraints (NLP-CC) for upper bounding that preserves the ReLU input-output graph, so any feasible solution yields a valid counterexample and enables rapid pruning of unsafe subproblems. We further accelerate verification with (i) warm-started NLP solves requiring minimal constraint-matrix updates and (ii) pattern-aligned strong branching that prioritizes splits most effective at tightening relaxations. We also provide conditions under which NLP-CC upper bounds are tight. Experiments on MNIST and CIFAR-10 show markedly tighter upper bounds than PGD across perturbation radii spanning up to three orders of magnitude, fast per-node solves in practice, and substantial end-to-end speedups over MIP-based verification, amplified by warm-starting, GPU batching, and pattern-aligned branching.
Large Reasoning Models (LRMs) have achieved tremendous success with their chain-of-thought (CoT) reasoning, yet also face safety issues similar to those of basic language models. In particular, while algorithms are designed to guide them to deliberately refuse harmful prompts with safe reasoning, this process often fails to generalize against diverse and complex jailbreak attacks. In this work, we attribute these failures to the generalization of the safe reasoning process, particularly their insufficiency against complex attack prompts. We provide both theoretical and empirical evidence to show the necessity of a more sufficient safe reasoning process to defend against advanced attack prompts. Building on this insight, we propose a Risk-Aware Preference Optimization (RAPO) framework that enables LRM to adaptively identify and address the safety risks with appropriate granularity in its thinking content. Extensive experiments demonstrate that RAPO successfully generalizes multiple LRMs' safe reasoning adaptively across diverse attack prompts whilst preserving general utility, contributing a robust alignment technique for LRM safety. Our code is available at https://github.com/weizeming/RAPO.
The proliferation of retrieval-augmented generation (RAG) has established vector databases as critical infrastructure, yet they introduce severe privacy risks via embedding inversion attacks. Existing paradigms face a fundamental trade-off: optimization-based methods require computationally prohibitive queries, while alignment-based approaches hinge on the unrealistic assumption of accessible in-domain training data. These constraints render them ineffective in strict black-box and cross-domain settings. To dismantle these barriers, we introduce Zero2Text, a novel training-free framework based on recursive online alignment. Unlike methods relying on static datasets, Zero2Text synergizes LLM priors with a dynamic ridge regression mechanism to iteratively align generation to the target embedding on-the-fly. We further demonstrate that standard defenses, such as differential privacy, fail to effectively mitigate this adaptive threat. Extensive experiments across diverse benchmarks validate Zero2Text; notably, on MS MARCO against the OpenAI victim model, it achieves 1.8x higher ROUGE-L and 6.4x higher BLEU-2 scores compared to baselines, recovering sentences from unknown domains without a single leaked data pair.