In real-world environments, AI systems often face unfamiliar scenarios without labeled data, creating a major challenge for conventional scene understanding models. The inability to generalize across unseen contexts limits the deployment of vision-based applications in dynamic, unstructured settings. This work introduces a Dynamic Context-Aware Scene Reasoning framework that leverages Vision-Language Alignment to address zero-shot real-world scenarios. The goal is to enable intelligent systems to infer and adapt to new environments without prior task-specific training. The proposed approach integrates pre-trained vision transformers and large language models to align visual semantics with natural language descriptions, enhancing contextual comprehension. A dynamic reasoning module refines predictions by combining global scene cues and object-level interactions guided by linguistic priors. Extensive experiments on zero-shot benchmarks such as COCO, Visual Genome, and Open Images demonstrate up to 18% improvement in scene understanding accuracy over baseline models in complex and unseen environments. Results also show robust performance in ambiguous or cluttered scenes due to the synergistic fusion of vision and language. This framework offers a scalable and interpretable approach for context-aware reasoning, advancing zero-shot generalization in dynamic real-world settings.
Communication remains a central bottleneck in large-scale distributed machine learning, and gradient sparsification has emerged as a promising strategy to alleviate this challenge. However, existing gradient compressors face notable limitations: Rand-$K$\ discards structural information and performs poorly in practice, while Top-$K$\ preserves informative entries but loses the contraction property and requires costly All-Gather operations. In this paper, we propose ARC-Top-$K$, an {All-Reduce}-Compatible Top-$K$ compressor that aligns sparsity patterns across nodes using a lightweight sketch of the gradient, enabling index-free All-Reduce while preserving globally significant information. ARC-Top-$K$\ is provably contractive and, when combined with momentum error feedback (EF21M), achieves linear speedup and sharper convergence rates than the original EF21M under standard assumptions. Empirically, ARC-Top-$K$\ matches the accuracy of Top-$K$\ while reducing wall-clock training time by up to 60.7\%, offering an efficient and scalable solution that combines the robustness of Rand-$K$\ with the strong performance of Top-$K$.
Continual learning (CL) aims to incrementally train a model on a sequence of tasks while retaining performance on prior ones. However, storing and replaying data is often infeasible due to privacy or security constraints and impractical for arbitrary pre-trained models. Data-free CL seeks to update models without access to previous data. Beyond regularization, we employ model inversion to synthesize data from the trained model, enabling replay without storing samples. Yet, model inversion in predictive models faces two challenges: (1) generating inputs solely from compressed output labels causes drift between synthetic and real data, and replaying such data can erode prior knowledge; (2) inversion is computationally expensive since each step backpropagates through the full model. These issues are amplified in large pre-trained models such as CLIP. To improve efficiency, we propose Per-layer Model Inversion (PMI), inspired by faster convergence in single-layer optimization. PMI provides strong initialization for full-model inversion, substantially reducing iterations. To mitigate feature shift, we model class-wise features via Gaussian distributions and contrastive model, ensuring alignment between synthetic and real features. Combining PMI and feature modeling, our approach enables continual learning of new classes by generating pseudo-images from semantic-aware projected features, achieving strong effectiveness and compatibility across multiple CL settings.
Language models can be used to provide interactive, personalized student feedback in educational settings. However, real-world deployment faces three key challenges: privacy concerns, limited computational resources, and the need for pedagogically valid responses. These constraints require small, open-source models that can run locally and reliably ground their outputs in correct information. We introduce SCRIBE, a framework for multi-hop, tool-augmented reasoning designed to generate valid responses to student questions about feedback reports. SCRIBE combines domain-specific tools with a self-reflective inference pipeline that supports iterative reasoning, tool use, and error recovery. We distil these capabilities into 3B and 8B models via two-stage LoRA fine-tuning on synthetic GPT-4o-generated data. Evaluation with a human-aligned GPT-Judge and a user study with 108 students shows that 8B-SCRIBE models achieve comparable or superior quality to much larger models in key dimensions such as relevance and actionability, while being perceived on par with GPT-4o and Llama-3.3 70B by students. These findings demonstrate the viability of SCRIBE for low-resource, privacy-sensitive educational applications.
Rectified flow models have become a de facto standard in image generation due to their stable sampling trajectories and high-fidelity outputs. Despite their strong generative capabilities, they face critical limitations in image editing tasks: inaccurate inversion processes for mapping real images back into the latent space, and gradient entanglement issues during editing often result in outputs that do not faithfully reflect the target prompt. Recent efforts have attempted to directly map source and target distributions via ODE-based approaches without inversion; however,these methods still yield suboptimal editing quality. In this work, we propose a flow decomposition-and-aggregation framework built upon an inversion-free formulation to address these limitations. Specifically, we semantically decompose the target prompt into multiple sub-prompts, compute an independent flow for each, and aggregate them to form a unified editing trajectory. While we empirically observe that decomposing the original flow enhances diversity in the target space, generating semantically aligned outputs still requires consistent guidance toward the full target prompt. To this end, we design a projection and soft-aggregation mechanism for flow, inspired by gradient conflict resolution in multi-task learning. This approach adaptively weights the sub-target velocity fields, suppressing semantic redundancy while emphasizing distinct directions, thereby preserving both diversity and consistency in the final edited output. Experimental results demonstrate that our method outperforms existing zero-shot editing approaches in terms of semantic fidelity and attribute disentanglement. The code is available at https://github.com/Harvard-AI-and-Robotics-Lab/SplitFlow.
Text-to-image (T2I) systems lack simple, reproducible ways to evaluate how well images match prompts and how models treat social attributes. Common proxies -- face classifiers and contrastive similarity -- reward surface cues, lack calibrated abstention, and miss attributes only weakly visible (for example, religion, culture, disability). We present FairJudge, a lightweight protocol that treats instruction-following multimodal LLMs as fair judges. It scores alignment with an explanation-oriented rubric mapped to [-1, 1]; constrains judgments to a closed label set; requires evidence grounded in the visible content; and mandates abstention when cues are insufficient. Unlike CLIP-only pipelines, FairJudge yields accountable, evidence-aware decisions; unlike mitigation that alters generators, it targets evaluation fairness. We evaluate gender, race, and age on FairFace, PaTA, and FairCoT; extend to religion, culture, and disability; and assess profession correctness and alignment on IdenProf, FairCoT-Professions, and our new DIVERSIFY-Professions. We also release DIVERSIFY, a 469-image corpus of diverse, non-iconic scenes. Across datasets, judge models outperform contrastive and face-centric baselines on demographic prediction and improve mean alignment while maintaining high profession accuracy, enabling more reliable, reproducible fairness audits.
Scientific Large Language Models (Sci-LLMs) have emerged as a promising frontier for accelerating biological discovery. However, these models face a fundamental challenge when processing raw biomolecular sequences: the tokenization dilemma. Whether treating sequences as a specialized language, risking the loss of functional motif information, or as a separate modality, introducing formidable alignment challenges, current strategies fundamentally limit their reasoning capacity. We challenge this sequence-centric paradigm by positing that a more effective strategy is to provide Sci-LLMs with high-level structured context derived from established bioinformatics tools, thereby bypassing the need to interpret low-level noisy sequence data directly. Through a systematic comparison of leading Sci-LLMs on biological reasoning tasks, we tested three input modes: sequence-only, context-only, and a combination of both. Our findings are striking: the context-only approach consistently and substantially outperforms all other modes. Even more revealing, the inclusion of the raw sequence alongside its high-level context consistently degrades performance, indicating that raw sequences act as informational noise, even for models with specialized tokenization schemes. These results suggest that the primary strength of existing Sci-LLMs lies not in their nascent ability to interpret biomolecular syntax from scratch, but in their profound capacity for reasoning over structured, human-readable knowledge. Therefore, we argue for reframing Sci-LLMs not as sequence decoders, but as powerful reasoning engines over expert knowledge. This work lays the foundation for a new class of hybrid scientific AI agents, repositioning the developmental focus from direct sequence interpretation towards high-level knowledge synthesis. The code is available at github.com/opendatalab-raise-dev/CoKE.
Humanitarian organizations face a critical choice: invest in costly commercial APIs or rely on free open-weight models for multilingual human rights monitoring. While commercial systems offer reliability, open-weight alternatives lack empirical validation -- especially for low-resource languages common in conflict zones. This paper presents the first systematic comparison of commercial and open-weight large language models (LLMs) for human-rights-violation detection across seven languages, quantifying the cost-reliability trade-off facing resource-constrained organizations. Across 78,000 multilingual inferences, we evaluate six models -- four instruction-aligned (Claude-Sonnet-4, DeepSeek-V3, Gemini-Flash-2.0, GPT-4.1-mini) and two open-weight (LLaMA-3-8B, Mistral-7B) -- using both standard classification metrics and new measures of cross-lingual reliability: Calibration Deviation (CD), Decision Bias (B), Language Robustness Score (LRS), and Language Stability Score (LSS). Results show that alignment, not scale, determines stability: aligned models maintain near-invariant accuracy and balanced calibration across typologically distant and low-resource languages (e.g., Lingala, Burmese), while open-weight models exhibit significant prompt-language sensitivity and calibration drift. These findings demonstrate that multilingual alignment enables language-agnostic reasoning and provide practical guidance for humanitarian organizations balancing budget constraints with reliability in multilingual deployment.
Group Relative Policy Optimization (GRPO) has shown strong potential for flow-matching-based text-to-image (T2I) generation, but it faces two key limitations: inaccurate advantage attribution, and the neglect of temporal dynamics of generation. In this work, we argue that shifting the optimization paradigm from the step level to the chunk level can effectively alleviate these issues. Building on this idea, we propose Chunk-GRPO, the first chunk-level GRPO-based approach for T2I generation. The insight is to group consecutive steps into coherent 'chunk's that capture the intrinsic temporal dynamics of flow matching, and to optimize policies at the chunk level. In addition, we introduce an optional weighted sampling strategy to further enhance performance. Extensive experiments show that ChunkGRPO achieves superior results in both preference alignment and image quality, highlighting the promise of chunk-level optimization for GRPO-based methods.
Despite their remarkable reasoning capabilities across diverse domains, large language models (LLMs) face fundamental challenges in natively functioning as generative reasoning recommendation models (GRRMs), where the intrinsic modeling gap between textual semantics and collaborative filtering signals, combined with the sparsity and stochasticity of user feedback, presents significant obstacles. This work explores how to build GRRMs by adapting pre-trained LLMs, which achieves a unified understanding-reasoning-prediction manner for recommendation tasks. We propose GREAM, an end-to-end framework that integrates three components: (i) Collaborative-Semantic Alignment, which fuses heterogeneous textual evidence to construct semantically consistent, discrete item indices and auxiliary alignment tasks that ground linguistic representations in interaction semantics; (ii) Reasoning Curriculum Activation, which builds a synthetic dataset with explicit Chain-of-Thought supervision and a curriculum that progresses through behavioral evidence extraction, latent preference modeling, intent inference, recommendation formulation, and denoised sequence rewriting; and (iii) Sparse-Regularized Group Policy Optimization (SRPO), which stabilizes post-training via Residual-Sensitive Verifiable Reward and Bonus-Calibrated Group Advantage Estimation, enabling end-to-end optimization under verifiable signals despite sparse successes. GREAM natively supports two complementary inference modes: Direct Sequence Recommendation for high-throughput, low-latency deployment, and Sequential Reasoning Recommendation that first emits an interpretable reasoning chain for causal transparency. Experiments on three datasets demonstrate consistent gains over strong baselines, providing a practical path toward verifiable-RL-driven LLM recommenders.