Composed Image Retrieval (CIR) is the task of retrieving a target image from a database using a multimodal query, which consists of a reference image and a modification text. The text specifies how to alter the reference image to form a ``mental image'', based on which CIR should find the target image in the database. The fundamental challenge of CIR is that this ``mental image'' is not physically available and is only implicitly defined by the query. The contemporary literature pursues zero-shot methods and uses a Large Multimodal Model (LMM) to generate a textual description for a given multimodal query, and then employs a Vision-Language Model (VLM) for textual-visual matching to search the target image. In contrast, we address CIR from first principles by directly generating the ``mental image'' for more accurate matching. Particularly, we prompt an LMM to generate a ``mental image'' for a given multimodal query and propose to use this ``mental image'' to search for the target image. As the ``mental image'' has a synthetic-to-real domain gap with real images, we also generate a synthetic counterpart for each real image in the database to facilitate matching. In this sense, our method uses LMM to construct a ``paracosm'', where it matches the multimodal query and database images. Hence, we call this method Paracosm. Notably, Paracosm is a training-free zero-shot CIR method. It significantly outperforms existing zero-shot methods on four challenging benchmarks, achieving state-of-the-art performance for zero-shot CIR.
Composed Image Retrieval (CIR) aims to retrieve target images based on a hybrid query comprising a reference image and a modification text. Early dual-tower Vision-Language Models (VLMs) struggle with cross-modality compositional reasoning required for this task. Recently, adapting generative Multimodal Large Language Models (MLLMs) for retrieval offers a promising direction. However, we identify that this adaptation strategy overlooks a fundamental issue: adapting a generative MLLM into a single-embedding discriminative retriever triggers a paradigm conflict, which leads to Capability Degradation - the deterioration of native fine-grained reasoning after retrieval adaptation. To address this challenge, we propose ReCALL (Recalibrating Capability Degradation), a model-agnostic framework that follows a diagnose-generate-refine pipeline: Firstly, we diagnose cognitive blind spots of the retriever via self-guided informative instance mining. Next, we generate corrective instructions and triplets by CoT prompting the foundation MLLM and conduct quality control with VQA-based consistency filtering. Finally, we refine the retriever through continual training on these triplets with a grouped contrastive scheme, thereby internalizing fine-grained visual-semantic distinctions and realigning the discriminative embedding space of retriever with intrinsic compositional reasoning within the MLLM. Extensive experiments on CIRR and FashionIQ show that ReCALL consistently recalibrates degraded capabilities and achieves state-of-the-art performance. Code will be released soon.
Composed Image Retrieval (CIR) is a pivotal and complex task in multimodal understanding. Current CIR benchmarks typically feature limited query categories and fail to capture the diverse requirements of real-world scenarios. To bridge this evaluation gap, we leverage image editing to achieve precise control over modification types and content, enabling a pipeline for synthesizing queries across a broad spectrum of categories. Using this pipeline, we construct EDIR, a novel fine-grained CIR benchmark. EDIR encompasses 5,000 high-quality queries structured across five main categories and fifteen subcategories. Our comprehensive evaluation of 13 multimodal embedding models reveals a significant capability gap; even state-of-the-art models (e.g., RzenEmbed and GME) struggle to perform consistently across all subcategories, highlighting the rigorous nature of our benchmark. Through comparative analysis, we further uncover inherent limitations in existing benchmarks, such as modality biases and insufficient categorical coverage. Furthermore, an in-domain training experiment demonstrates the feasibility of our benchmark. This experiment clarifies the task challenges by distinguishing between categories that are solvable with targeted data and those that expose intrinsic limitations of current model architectures.
Composed Video Retrieval (CoVR) facilitates video retrieval by combining visual and textual queries. However, existing CoVR frameworks typically fuse multimodal inputs in a single stage, achieving only marginal gains over initial baseline. To address this, we propose a novel CoVR framework that leverages the representational power of Vision Language Models (VLMs). Our framework incorporates a novel cross-attention module X-Aligner, composed of cross-attention layers that progressively fuse visual and textual inputs and align their multimodal representation with that of the target video. To further enhance the representation of the multimodal query, we incorporate the caption of the visual query as an additional input. The framework is trained in two stages to preserve the pretrained VLM representation. In the first stage, only the newly introduced module is trained, while in the second stage, the textual query encoder is also fine-tuned. We implement our framework on top of BLIP-family architecture, namely BLIP and BLIP-2, and train it on the Webvid-CoVR data set. In addition to in-domain evaluation on Webvid-CoVR-Test, we perform zero-shot evaluations on the Composed Image Retrieval (CIR) data sets CIRCO and Fashion-IQ. Our framework achieves state-of-the-art performance on CoVR obtaining a Recall@1 of 63.93% on Webvid-CoVR-Test, and demonstrates strong zero-shot generalization on CIR tasks.
Retrieval is being redefined by agentic AI, demanding multimodal reasoning beyond conventional similarity-based paradigms. Composed Image Retrieval (CIR) exemplifies this shift as each query combines a reference image with textual modifications, requiring compositional understanding across modalities. While embedding-based CIR methods have achieved progress, they remain narrow in perspective, capturing limited cross-modal cues and lacking semantic reasoning. To address these limitations, we introduce XR, a training-free multi-agent framework that reframes retrieval as a progressively coordinated reasoning process. It orchestrates three specialized types of agents: imagination agents synthesize target representations through cross-modal generation, similarity agents perform coarse filtering via hybrid matching, and question agents verify factual consistency through targeted reasoning for fine filtering. Through progressive multi-agent coordination, XR iteratively refines retrieval to meet both semantic and visual query constraints, achieving up to a 38% gain over strong training-free and training-based baselines on FashionIQ, CIRR, and CIRCO, while ablations show each agent is essential. Code is available: https://01yzzyu.github.io/xr.github.io/.
Zero-shot composed image retrieval (ZS-CIR) is a rapidly growing area with significant practical applications, allowing users to retrieve a target image by providing a reference image and a relative caption describing the desired modifications. Existing ZS-CIR methods often struggle to capture fine-grained changes and integrate visual and semantic information effectively. They primarily rely on either transforming the multimodal query into a single text using image-to-text models or employing large language models for target image description generation, approaches that often fail to capture complementary visual information and complete semantic context. To address these limitations, we propose a novel Fine-Grained Zero-Shot Composed Image Retrieval method with Complementary Visual-Semantic Integration (CVSI). Specifically, CVSI leverages three key components: (1) Visual Information Extraction, which not only extracts global image features but also uses a pre-trained mapping network to convert the image into a pseudo token, combining it with the modification text and the objects most likely to be added. (2) Semantic Information Extraction, which involves using a pre-trained captioning model to generate multiple captions for the reference image, followed by leveraging an LLM to generate the modified captions and the objects most likely to be added. (3) Complementary Information Retrieval, which integrates information extracted from both the query and database images to retrieve the target image, enabling the system to efficiently handle retrieval queries in a variety of situations. Extensive experiments on three public datasets (e.g., CIRR, CIRCO, and FashionIQ) demonstrate that CVSI significantly outperforms existing state-of-the-art methods. Our code is available at https://github.com/yyc6631/CVSI.
Composed Image Retrieval (CIR) enables image search by combining a reference image with modification text. Intrinsic noise in CIR triplets incurs intrinsic uncertainty and threatens the model's robustness. Probabilistic learning approaches have shown promise in addressing such issues; however, they fall short for CIR due to their instance-level holistic modeling and homogeneous treatment of queries and targets. This paper introduces a Heterogeneous Uncertainty-Guided (HUG) paradigm to overcome these limitations. HUG utilizes a fine-grained probabilistic learning framework, where queries and targets are represented by Gaussian embeddings that capture detailed concepts and uncertainties. We customize heterogeneous uncertainty estimations for multi-modal queries and uni-modal targets. Given a query, we capture uncertainties not only regarding uni-modal content quality but also multi-modal coordination, followed by a provable dynamic weighting mechanism to derive comprehensive query uncertainty. We further design uncertainty-guided objectives, including query-target holistic contrast and fine-grained contrasts with comprehensive negative sampling strategies, which effectively enhance discriminative learning. Experiments on benchmarks demonstrate HUG's effectiveness beyond state-of-the-art baselines, with faithful analysis justifying the technical contributions.
Composed Image Retrieval (CIR) enables users to search for target images using both a reference image and manipulation text, offering substantial advantages over single-modality retrieval systems. However, existing CIR methods suffer from representation space fragmentation: queries and targets comprise heterogeneous modalities and are processed by distinct encoders, forcing models to bridge misaligned representation spaces only through post-hoc alignment, which fundamentally limits retrieval performance. This architectural asymmetry manifests as three distinct, well-separated clusters in the feature space, directly demonstrating how heterogeneous modalities create fundamentally misaligned representation spaces from initialization. In this work, we propose CSMCIR, a unified representation framework that achieves efficient query-target alignment through three synergistic components. First, we introduce a Multi-level Chain-of-Thought (MCoT) prompting strategy that guides Multimodal Large Language Models to generate discriminative, semantically compatible captions for target images, establishing modal symmetry. Building upon this, we design a symmetric dual-tower architecture where both query and target sides utilize the identical shared-parameter Q-Former for cross-modal encoding, ensuring consistent feature representations and further reducing the alignment gap. Finally, this architectural symmetry enables an entropy-based, temporally dynamic Memory Bank strategy that provides high-quality negative samples while maintaining consistency with the evolving model state. Extensive experiments on four benchmark datasets demonstrate that our CSMCIR achieves state-of-the-art performance with superior training efficiency. Comprehensive ablation studies further validate the effectiveness of each proposed component.
Composed Image Retrieval (CIR) aims to find a target image that aligns with user intent, expressed through a reference image and a modification text. While Zero-shot CIR (ZS-CIR) methods sidestep the need for labeled training data by leveraging pretrained vision-language models, they often rely on a single fused query that merges all descriptive cues of what the user wants, tending to dilute key information and failing to account for what they wish to avoid. Moreover, current CIR benchmarks assume a single correct target per query, overlooking the ambiguity in modification texts. To address these challenges, we propose Soft Filtering with Textual constraints (SoFT), a training-free, plug-and-play filtering module for ZS-CIR. SoFT leverages multimodal large language models (LLMs) to extract two complementary constraints from the reference-modification pair: prescriptive (must-have) and proscriptive (must-avoid) constraints. These serve as semantic filters that reward or penalize candidate images to re-rank results, without modifying the base retrieval model or adding supervision. In addition, we construct a two-stage dataset pipeline that refines CIR benchmarks. We first identify multiple plausible targets per query to construct multi-target triplets, capturing the open-ended nature of user intent. Then guide multimodal LLMs to rewrite the modification text to focus on one target, while referencing contrastive distractors to ensure precision. This enables more comprehensive and reliable evaluation under varying ambiguity levels. Applied on top of CIReVL, a ZS-CIR retriever, SoFT raises R@5 to 65.25 on CIRR (+12.94), mAP@50 to 27.93 on CIRCO (+6.13), and R@50 to 58.44 on FashionIQ (+4.59), demonstrating broad effectiveness.
Geo-spatial analysis of our world benefits from a multimodal approach, as every single geographic location can be described in numerous ways (images from various viewpoints, textual descriptions, and geographic coordinates). Current geo-spatial benchmarks have limited coverage across modalities, considerably restricting progress in the field, as current approaches cannot integrate all relevant modalities within a unified framework. We introduce the Multi-Modal Landmark dataset (MMLANDMARKS), a benchmark composed of four modalities: 197k highresolution aerial images, 329k ground-view images, textual information, and geographic coordinates for 18,557 distinct landmarks in the United States. The MMLANDMARKS dataset has a one-to-one correspondence across every modality, which enables training and benchmarking models for various geo-spatial tasks, including cross-view Ground-to-Satellite retrieval, ground and satellite geolocalization, Text-to-Image, and Text-to-GPS retrieval. We demonstrate broad generalization and competitive performance against off-the-shelf foundational models and specialized state-of-the-art models across different tasks by employing a simple CLIP-inspired baseline, illustrating the necessity for multimodal datasets to achieve broad geo-spatial understanding.