Abstract:Large language model (LLM)-based embedding models, benefiting from large scale pre-training and post-training, have begun to surpass BERT and T5-based models on general-purpose text embedding tasks such as document retrieval. However, a fundamental limitation of LLM embeddings lies in the unidirectional attention used during autoregressive pre-training, which misaligns with the bidirectional nature of text embedding tasks. To this end, We propose adopting diffusion language models for text embeddings, motivated by their inherent bidirectional architecture and recent success in matching or surpassing LLMs especially on reasoning tasks. We present the first systematic study of the diffusion language embedding model, which outperforms the LLM-based embedding model by 20% on long-document retrieval, 8% on reasoning-intensive retrieval, 2% on instruction-following retrieval, and achieve competitive performance on traditional text embedding benchmarks. Our analysis verifies that bidirectional attention is crucial for encoding global context in long and complex text.
Abstract:Text-to-SQL parsing and end-to-end question answering (E2E TQA) are two main approaches for Table-based Question Answering task. Despite success on multiple benchmarks, they have yet to be compared and their synergy remains unexplored. In this paper, we identify different strengths and weaknesses through evaluating state-of-the-art models on benchmark datasets: Text-to-SQL demonstrates superiority in handling questions involving arithmetic operations and long tables; E2E TQA excels in addressing ambiguous questions, non-standard table schema, and complex table contents. To combine both strengths, we propose a Synergistic Table-based Question Answering approach that integrate different models via answer selection, which is agnostic to any model types. Further experiments validate that ensembling models by either feature-based or LLM-based answer selector significantly improves the performance over individual models.
Abstract:Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption. Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy and address the issue of workload imbalance. To tackle the challenge of multi-objective scheduling, i.e., maximizing GPU utilization while reducing operational costs, we propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities. Compared with other algorithms, our proposed method improves the system utility by up to 28.6% attributable to higher GPU utilization, lower energy cost, and less carbon emission.