Abstract:Composed Video Retrieval (CoVR) facilitates video retrieval by combining visual and textual queries. However, existing CoVR frameworks typically fuse multimodal inputs in a single stage, achieving only marginal gains over initial baseline. To address this, we propose a novel CoVR framework that leverages the representational power of Vision Language Models (VLMs). Our framework incorporates a novel cross-attention module X-Aligner, composed of cross-attention layers that progressively fuse visual and textual inputs and align their multimodal representation with that of the target video. To further enhance the representation of the multimodal query, we incorporate the caption of the visual query as an additional input. The framework is trained in two stages to preserve the pretrained VLM representation. In the first stage, only the newly introduced module is trained, while in the second stage, the textual query encoder is also fine-tuned. We implement our framework on top of BLIP-family architecture, namely BLIP and BLIP-2, and train it on the Webvid-CoVR data set. In addition to in-domain evaluation on Webvid-CoVR-Test, we perform zero-shot evaluations on the Composed Image Retrieval (CIR) data sets CIRCO and Fashion-IQ. Our framework achieves state-of-the-art performance on CoVR obtaining a Recall@1 of 63.93% on Webvid-CoVR-Test, and demonstrates strong zero-shot generalization on CIR tasks.
Abstract:We present Logics-STEM, a state-of-the-art reasoning model fine-tuned on Logics-STEM-SFT-Dataset, a high-quality and diverse dataset at 10M scale that represents one of the largest-scale open-source long chain-of-thought corpora. Logics-STEM targets reasoning tasks in the domains of Science, Technology, Engineering, and Mathematics (STEM), and exhibits exceptional performance on STEM-related benchmarks with an average improvement of 4.68% over the next-best model at 8B scale. We attribute the gains to our data-algorithm co-design engine, where they are jointly optimized to fit a gold-standard distribution behind reasoning. Data-wise, the Logics-STEM-SFT-Dataset is constructed from a meticulously designed data curation engine with 5 stages to ensure the quality, diversity, and scalability, including annotation, deduplication, decontamination, distillation, and stratified sampling. Algorithm-wise, our failure-driven post-training framework leverages targeted knowledge retrieval and data synthesis around model failure regions in the Supervised Fine-tuning (SFT) stage to effectively guide the second-stage SFT or the reinforcement learning (RL) for better fitting the target distribution. The superior empirical performance of Logics-STEM reveals the vast potential of combining large-scale open-source data with carefully designed synthetic data, underscoring the critical role of data-algorithm co-design in enhancing reasoning capabilities through post-training. We make both the Logics-STEM models (8B and 32B) and the Logics-STEM-SFT-Dataset (10M and downsampled 2.2M versions) publicly available to support future research in the open-source community.