Abstract:Self-play bootstraps LLM reasoning through an iterative Challenger-Solver loop: the Challenger is trained to generate questions that target the Solver's capabilities, and the Solver is optimized on the generated data to expand its reasoning skills. However, existing frameworks like R-Zero often exhibit non-sustained improvement, where early gains degrade as self-play continues. We identify a key failure mode, Diversity Illusion, where the Solver's training signals appear diverse yet collapse into recurring underlying patterns. It manifests as (1) Local Diversity Illusion, where diversity is enforced only within-batch, inducing cross-iteration mode cycling; and (2) Surface Diversity Illusion, where questions vary superficially but require near-identical reasoning skills. To mitigate them, we propose R-Diverse with two aligned innovations: Memory-Augmented Penalty (MAP), which uses a persistent memory bank to discourage recycling across iterations, and Skill-Aware Measurement (SAM), which evaluates diversity by the reasoning skills exercised rather than surface variation of questions. Across 10 math and general reasoning benchmarks, R-Diverse sustains gains over more iterations and consistently outperforms prior self-play methods. Code is available at https://github.com/Gengsheng-Li/R-Diverse.
Abstract:Self-play has enabled large language models to autonomously improve through self-generated challenges. However, existing self-play methods for vision-language models rely on passive interaction with static image collections, resulting in strong dependence on initial datasets and inefficient learning. Without the ability to actively seek visual data tailored to their evolving capabilities, agents waste computational effort on samples that are either trivial or beyond their current skill level. To address these limitations, we propose Active-Zero, a framework that shifts from passive interaction to active exploration of visual environments. Active-Zero employs three co-evolving agents: a Searcher that retrieves images from open-world repositories based on the model's capability frontier, a Questioner that synthesizes calibrated reasoning tasks, and a Solver refined through accuracy rewards. This closed loop enables self-scaffolding auto-curricula where the model autonomously constructs its learning trajectory. On Qwen2.5-VL-7B-Instruct across 12 benchmarks, Active-Zero achieves 53.97 average accuracy on reasoning tasks (5.7% improvement) and 59.77 on general understanding (3.9% improvement), consistently outperforming existing self-play baselines. These results highlight active exploration as a key ingredient for scalable and adaptive self-evolving vision-language systems.
Abstract:Composed Image Retrieval (CIR) aims to retrieve target images based on a hybrid query comprising a reference image and a modification text. Early dual-tower Vision-Language Models (VLMs) struggle with cross-modality compositional reasoning required for this task. Recently, adapting generative Multimodal Large Language Models (MLLMs) for retrieval offers a promising direction. However, we identify that this adaptation strategy overlooks a fundamental issue: adapting a generative MLLM into a single-embedding discriminative retriever triggers a paradigm conflict, which leads to Capability Degradation - the deterioration of native fine-grained reasoning after retrieval adaptation. To address this challenge, we propose ReCALL (Recalibrating Capability Degradation), a model-agnostic framework that follows a diagnose-generate-refine pipeline: Firstly, we diagnose cognitive blind spots of the retriever via self-guided informative instance mining. Next, we generate corrective instructions and triplets by CoT prompting the foundation MLLM and conduct quality control with VQA-based consistency filtering. Finally, we refine the retriever through continual training on these triplets with a grouped contrastive scheme, thereby internalizing fine-grained visual-semantic distinctions and realigning the discriminative embedding space of retriever with intrinsic compositional reasoning within the MLLM. Extensive experiments on CIRR and FashionIQ show that ReCALL consistently recalibrates degraded capabilities and achieves state-of-the-art performance. Code will be released soon.
Abstract:This work introduces the first closed-loop adaptive optics (AO) system capable of optically correcting aberrations in real-time without a guidestar or a wavefront sensor. Nearly 40 years ago, Cederquist et al. demonstrated that asymmetric apertures enable phase retrieval (PR) algorithms to perform fully computational wavefront sensing, albeit at a high computational cost. More recently, Chimitt et al. extended this approach with machine learning and demonstrated real-time wavefront sensing using only a single (guidestar-based) point-spread-function (PSF) measurement. Inspired by these works, we introduce a guidestar-free AO framework built around asymmetric apertures and machine learning. Our approach combines three key elements: (1) an asymmetric aperture placed in the optical path that enables PR-based wavefront sensing, (2) a pair of machine learning algorithms that estimate the PSF from natural scene measurements and reconstruct phase aberrations, and (3) a spatial light modulator that performs optical correction. We experimentally validate this framework on dense natural scenes imaged through unknown obscurants. Our method outperforms state-of-the-art guidestar-free wavefront shaping methods, using an order of magnitude fewer measurements and three orders of magnitude less computation.
Abstract:Continual instruction tuning (CIT) requires multimodal large language models (MLLMs) to adapt to a stream of tasks without forgetting prior capabilities. A common strategy is to isolate updates by routing inputs to different LoRA experts. However, existing LoRA-based Mixture-of-Experts (MoE) methods often jointly update the router and experts in an indiscriminate way, causing the router's preferences to co-drift with experts' adaptation pathways and gradually deviate from early-stage input-expert specialization. We term this phenomenon Misaligned Co-drift, which blurs expert responsibilities and exacerbates forgetting.To address this, we introduce the pathway activation subspace (PASs), a LoRA-induced subspace that reflects which low-rank pathway directions an input activates in each expert, providing a capability-aligned coordinate system for routing and preservation. Based on PASs, we propose a fixed-capacity PASs-based MoE-LoRA method with two components: PAS-guided Reweighting, which calibrates routing using each expert's pathway activation signals, and PAS-aware Rank Stabilization, which selectively stabilizes rank directions important to previous tasks. Experiments on a CIT benchmark show that our approach consistently outperforms a range of conventional continual learning baselines and MoE-LoRA variants in both accuracy and anti-forgetting without adding parameters. Our code will be released upon acceptance.
Abstract:While the Contrastive Language-Image Pretraining(CLIP) model has achieved remarkable success in a variety of downstream vison language understanding tasks, enhancing its capability for fine-grained image-text alignment remains an active research focus. To this end, most existing works adopt the strategy of explicitly increasing the granularity of visual information processing, e.g., incorporating visual prompts to guide the model focus on specific local regions within the image. Meanwhile, researches on Multimodal Large Language Models(MLLMs) have demonstrated that training with long and detailed textual descriptions can effectively improve the model's fine-grained vision-language alignment. However, the inherent token length limitation of CLIP's text encoder fundamentally limits CLIP to process more granular textual information embedded in long text sequences. To synergistically leverage the advantages of enhancing both visual and textual content processing granularity, we propose PixCLIP, a novel framework designed to concurrently accommodate visual prompt inputs and process lengthy textual descriptions. Specifically, we first establish an automated annotation pipeline capable of generating pixel-level localized, long-form textual descriptions for images. Utilizing this pipeline, we construct LongGRIT, a high-quality dataset comprising nearly 1.5 million samples. Secondly, we replace CLIP's original text encoder with the LLM and propose a three-branch pixel-text alignment learning framework, facilitating fine-grained alignment between image regions and corresponding textual descriptions at arbitrary granularity. Experiments demonstrate that PixCLIP showcases breakthroughs in pixel-level interaction and handling long-form texts, achieving state-of-the-art performance.
Abstract:Few-shot fine-grained visual classification (FGVC) aims to leverage limited data to enable models to discriminate subtly distinct categories. Recent works mostly finetuned the pre-trained visual language models to achieve performance gain, yet suffering from overfitting and weak generalization. To deal with this, we introduce UniFGVC, a universal training-free framework that reformulates few-shot FGVC as multimodal retrieval. First, we propose the Category-Discriminative Visual Captioner (CDV-Captioner) to exploit the open-world knowledge of multimodal large language models (MLLMs) to generate a structured text description that captures the fine-grained attribute features distinguishing closely related classes. CDV-Captioner uses chain-of-thought prompting and visually similar reference images to reduce hallucination and enhance discrimination of generated captions. Using it we can convert each image into an image-description pair, enabling more comprehensive feature representation, and construct the multimodal category templates using few-shot samples for the subsequent retrieval pipeline. Then, off-the-shelf vision and text encoders embed query and template pairs, and FGVC is accomplished by retrieving the nearest template in the joint space. UniFGVC ensures broad compatibility with diverse MLLMs and encoders, offering reliable generalization and adaptability across few-shot FGVC scenarios. Extensive experiments on 12 FGVC benchmarks demonstrate its consistent superiority over prior few-shot CLIP-based methods and even several fully-supervised MLLMs-based approaches.
Abstract:Large vision-language models (LVLMs) have achieved remarkable performance on multimodal tasks such as visual question answering (VQA) and image captioning. However, they still suffer from hallucinations, generating text inconsistent with visual input, posing significant risks in real-world applications. Existing approaches to address this issue focus on incorporating external knowledge bases, alignment training, or decoding strategies, all of which require substantial computational cost and time. Recent works try to explore more efficient alternatives by adjusting LVLMs' internal representations. Although promising, these methods may cause hallucinations to be insufficiently suppressed or lead to excessive interventions that negatively affect normal semantics. In this work, we leverage sparse autoencoders (SAEs) to identify semantic directions closely associated with either hallucinations or actuality, realizing more precise and direct hallucination-related representations. Our analysis demonstrates that interventions along the faithful direction we identified can mitigate hallucinations, while those along the hallucinatory direction can exacerbate them. Building on these insights, we propose Steering LVLMs via SAE Latent Directions (SSL), a training-free method based on SAE-derived latent directions to mitigate hallucinations in LVLMs. Extensive experiments demonstrate that SSL significantly outperforms existing decoding approaches in mitigating hallucinations, while maintaining transferability across different model architectures with negligible additional time overhead.
Abstract:Understanding the environment and a robot's physical reachability is crucial for task execution. While state-of-the-art vision-language models (VLMs) excel in environmental perception, they often generate inaccurate or impractical responses in embodied visual reasoning tasks due to a lack of understanding of robotic physical reachability. To address this issue, we propose a unified representation of physical reachability across diverse robots, i.e., Space-Physical Reachability Map (S-P Map), and PhysVLM, a vision-language model that integrates this reachability information into visual reasoning. Specifically, the S-P Map abstracts a robot's physical reachability into a generalized spatial representation, independent of specific robot configurations, allowing the model to focus on reachability features rather than robot-specific parameters. Subsequently, PhysVLM extends traditional VLM architectures by incorporating an additional feature encoder to process the S-P Map, enabling the model to reason about physical reachability without compromising its general vision-language capabilities. To train and evaluate PhysVLM, we constructed a large-scale multi-robot dataset, Phys100K, and a challenging benchmark, EQA-phys, which includes tasks for six different robots in both simulated and real-world environments. Experimental results demonstrate that PhysVLM outperforms existing models, achieving a 14\% improvement over GPT-4o on EQA-phys and surpassing advanced embodied VLMs such as RoboMamba and SpatialVLM on the RoboVQA-val and OpenEQA benchmarks. Additionally, the S-P Map shows strong compatibility with various VLMs, and its integration into GPT-4o-mini yields a 7.1\% performance improvement.




Abstract:Large vision-language models (LVLMs) have made substantial progress in integrating large language models (LLMs) with visual inputs, enabling advanced multimodal reasoning. Despite their success, a persistent challenge is hallucination-where generated text fails to accurately reflect visual content-undermining both accuracy and reliability. Existing methods focus on alignment training or decoding refinements but primarily address symptoms at the generation stage without probing the underlying causes. In this work, we investigate the internal mechanisms driving hallucination in LVLMs, with an emphasis on the multi-head attention module. Specifically, we introduce Vision-aware Head Divergence (VHD), a metric that quantifies the sensitivity of attention head outputs to visual context. Based on this, our findings reveal the presence of vision-aware attention heads that are more attuned to visual information; however, the model's overreliance on its prior language patterns is closely related to hallucinations. Building on these insights, we propose Vision-aware Head Reinforcement (VHR), a training-free approach to mitigate hallucination by enhancing the role of vision-aware attention heads. Extensive experiments demonstrate that our method achieves superior performance compared to state-of-the-art approaches in mitigating hallucinations, while maintaining high efficiency with negligible additional time overhead.