Abstract:This paper focuses on the asymptotic analysis of a class of nonlinear one-bit precoding schemes under Rayleigh fading channels. The considered scheme employs a convex-relaxation-then-quantization (CRQ) approach to the well-known minimum mean square error (MMSE) model, which includes the classical one-bit precoder SQUID as a special case. To analyze its asymptotic behavior, we develop a novel analytical framework based on approximate message passing (AMP). We show that, the statistical properties of the considered scheme can be asymptotically characterized by a scalar ``signal plus Gaussian noise'' model. Based on this, we further derive a closed-form expression for the symbol error probability (SEP) in the large-system limit, which quantitatively characterizes the impact of both system and model parameters on SEP performance. Simulation results validate our analysis and also demonstrate that performance gains over SQUID can be achieved by appropriately tuning the parameters involved in the considered model.
Abstract:This paper studies a reconfigurable intelligent surface (RIS)-enhanced decoupled symbiotic radio (SR) system in which a primary transmitter delivers common data to multiple primary receivers (PRs), while a RIS-based backscatter device sends secondary data to a backscatter receiver (BRx). Unlike conventional SR, the BRx performs energy detection and never decodes the primary signal, thereby removing ambiguity and preventing exposure of the primary payload to unintended receivers. In this paper, we formulate the problem as the minimization of the transmit power subject to a common broadcast rate constraint across all PRs and a bit error rate (BER) constraint at the BRx. The problem is nonconvex due to the unit-modulus RIS constraint and coupled quadratic forms. Leveraging a rate-balanced reformulation and a monotonic BER ratio characterization, we develop a low-complexity penalty-based block coordinate descent algorithm with closed-form updates. Numerical results show fast convergence of the proposed algorithm and reduced power consumption of the considered RIS-enhanced information-decoupled SR system over conventional SR baselines.
Abstract:In this paper, we investigate the beamforming design problem in an integrated sensing and communication (ISAC) system, where a multi-antenna base station simultaneously serves multiple communication users while performing radar sensing. We formulate the problem as the minimization of the total transmit power, subject to signal-to-interference-plus-noise ratio (SINR) constraints for communication users and mean-squared-error (MSE) constraints for radar sensing. The core challenge arises from the complex coupling between communication SINR requirements and sensing performance metrics. To efficiently address this challenge, we first establish the equivalence between the original ISAC beamforming problem and its semidefinite relaxation (SDR), derive its Lagrangian dual formulation, and further reformulate it as a generalized downlink beamforming (GDB) problem with potentially indefinite weighting matrices. Compared to the classical DB problem, the presence of indefinite weighting matrices in the GDB problem introduces substantial analytical and computational challenges. Our key technical contributions include (i) a necessary and sufficient condition for the boundedness of the GDB problem, and (ii) a tailored efficient fixed point iteration (FPI) algorithm with a provable convergence guarantee for solving the GDB problem. Building upon these results, we develop a duality-based fixed point iteration (Dual-FPI) algorithm, which integrates an outer subgradient ascent loop with an inner FPI loop. Simulation results demonstrate that the proposed Dual-FPI algorithm achieves globally optimal solutions while significantly reducing computational complexity compared with existing baseline approaches.




Abstract:A great amount of endeavor has recently been devoted to activity detection for massive machine-type communications in cell-free multiple-input multiple-output (MIMO) systems. However, as the number of antennas at the access points (APs) increases, the Rayleigh distance that separates the near-field and far-field regions also expands, rendering the conventional assumption of far-field propagation alone impractical. To address this challenge, this paper establishes a covariance-based formulation that can effectively capture the statistical property of hybrid near-far field channels. Based on this formulation, we theoretically reveal that increasing the proportion of near-field channels enhances the detection performance. Furthermore, we propose a distributed algorithm, where each AP performs local activity detection and only exchanges the detection results to the central processing unit, thus significantly reducing the computational complexity and the communication overhead. Not only with convergence guarantee, the proposed algorithm is unified in the sense that it can handle single-cell or cell-free systems with either near-field or far-field devices as special cases. Simulation results validate the theoretical analyses and demonstrate the superior performance of the proposed approach compared with existing methods.
Abstract:Massive multiple-input multiple-output (MIMO) systems employing one-bit digital-to-analog converters offer a hardware-efficient solution for wireless communications. However, the one-bit constraint poses significant challenges for precoding design, as it transforms the problem into a discrete and nonconvex optimization task. In this paper, we investigate a widely adopted ``convex-relaxation-then-quantization" approach for nonlinear symbol-level one-bit precoding. Specifically, we first solve a convex relaxation of the discrete minimum mean square error precoding problem, and then quantize the solution to satisfy the one-bit constraint. To analyze the high-dimensional asymptotic performance of this scheme, we develop a novel analytical framework based on approximate message passing (AMP). This framework enables us to derive a closed-form expression for the symbol error probability (SEP) at the receiver side in the large-system limit, which provides a quantitative characterization of how model and system parameters affect the SEP performance. Our empirical results suggest that the $\ell_\infty^2$ regularizer, when paired with an optimally chosen regularization parameter, achieves optimal SEP performance within a broad class of convex regularization functions. As a first step towards a theoretical justification, we prove the optimality of the $\ell_\infty^2$ regularizer within the mixed $\ell_\infty^2$-$\ell_2^2$ regularization functions.
Abstract:A great amount of endeavor has recently been devoted to activity detection for massive machine-type communications in cell-free massive MIMO. However, in practice, as the number of antennas at the access points (APs) increases, the Rayleigh distance that separates the near-field and far-field regions also expands, rendering the conventional assumption of far-field propagation alone impractical. To address this challenge, this paper considers a hybrid near-far field activity detection in cell-free massive MIMO, and establishes a covariance-based formulation, which facilitates the development of a distributed algorithm to alleviate the computational burden at the central processing unit (CPU). Specifically, each AP performs local activity detection for the devices and then transmits the detection result to the CPU for further processing. In particular, a novel coordinate descent algorithm based on the Sherman-Morrison-Woodbury update with Taylor expansion is proposed to handle the local detection problem at each AP. Moreover, we theoretically analyze how the hybrid near-far field channels affect the detection performance. Simulation results validate the theoretical analysis and demonstrate the superior performance of the proposed approach compared with existing approaches.
Abstract:In this paper, we propose an adaptive proximal inexact gradient (APIG) framework for solving a class of nonsmooth composite optimization problems involving function and gradient errors. Unlike existing inexact proximal gradient methods, the proposed framework introduces a new line search condition that jointly adapts to function and gradient errors, enabling adaptive stepsize selection while maintaining theoretical guarantees. Specifically, we prove that the proposed framework achieves an $\epsilon$-stationary point within $\mathcal{O}(\epsilon^{-2})$ iterations for nonconvex objectives and an $\epsilon$-optimal solution within $\mathcal{O}(\epsilon^{-1})$ iterations for convex cases, matching the best-known complexity in this context. We then custom-apply the APIG framework to an important signal processing problem: the joint beamforming and compression problem (JBCP) with per-antenna power constraints (PAPCs) in cooperative cellular networks. This customized application requires careful exploitation of the problem's special structure such as the tightness of the semidefinite relaxation (SDR) and the differentiability of the dual. Numerical experiments demonstrate the superior performance of our custom-application over state-of-the-art benchmarks for the JBCP.
Abstract:Integrated sensing and communication (ISAC) has been considered a key feature of next-generation wireless networks. This paper investigates the joint design of the radar receive filter and dual-functional transmit waveform for the multiple-input multiple-output (MIMO) ISAC system. While optimizing the mean square error (MSE) of the radar receive spatial response and maximizing the achievable rate at the communication receiver, besides the constraints of full-power radar receiving filter and unimodular transmit sequence, we control the maximum range sidelobe level, which is often overlooked in existing ISAC waveform design literature, for better radar imaging performance. To solve the formulated optimization problem with convex and nonconvex constraints, we propose an inexact augmented Lagrangian method (ALM) algorithm. For each subproblem in the proposed inexact ALM algorithm, we custom-design a block successive upper-bound minimization (BSUM) scheme with closed-form solutions for all blocks of variable to enhance the computational efficiency. Convergence analysis shows that the proposed algorithm is guaranteed to provide a stationary and feasible solution. Extensive simulations are performed to investigate the impact of different system parameters on communication and radar imaging performance. Comparison with the existing works shows the superiority of the proposed algorithm.




Abstract:This paper studies the device activity detection problem in a massive multiple-input multiple-output (MIMO) system for near-field communications (NFC). In this system, active devices transmit their signature sequences to the base station (BS), which detects the active devices based on the received signal. In this paper, we model the near-field channels as correlated Rician fading channels and formulate the device activity detection problem as a maximum likelihood estimation (MLE) problem. Compared to the traditional uncorrelated channel model, the correlation of channels complicates both algorithm design and theoretical analysis of the MLE problem. On the algorithmic side, we propose two computationally efficient algorithms for solving the MLE problem: an exact coordinate descent (CD) algorithm and an inexact CD algorithm. The exact CD algorithm solves the one-dimensional optimization subproblem exactly using matrix eigenvalue decomposition and polynomial root-finding. By approximating the objective function appropriately, the inexact CD algorithm solves the one-dimensional optimization subproblem inexactly with lower complexity and more robust numerical performance. Additionally, we analyze the detection performance of the MLE problem under correlated channels by comparing it with the case of uncorrelated channels. The analysis shows that when the overall number of devices $N$ is large or the signature sequence length $L$ is small, the detection performance of MLE under correlated channels tends to be better than that under uncorrelated channels. Conversely, when $N$ is small or $L$ is large, MLE performs better under uncorrelated channels than under correlated ones. Simulation results demonstrate the computational efficiency of the proposed algorithms and verify the correctness of the analysis.

Abstract:In this paper, we consider a class of convex programming problems with linear equality constraints, which finds broad applications in machine learning and signal processing. We propose a new adaptive balanced augmented Lagrangian (ABAL) method for solving these problems. The proposed ABAL method adaptively selects the stepsize parameter and enjoys a low per-iteration complexity, involving only the computation of a proximal mapping of the objective function and the solution of a linear equation. These features make the proposed method well-suited to large-scale problems. We then custom-apply the ABAL method to solve the ISAC beamforming design problem, which is formulated as a nonlinear semidefinite program in a previous work. This customized application requires careful exploitation of the problem's special structure such as the property that all of its signal-to-interference-and-noise-ratio (SINR) constraints hold with equality at the solution and an efficient computation of the proximal mapping of the objective function. Simulation results demonstrate the efficiency of the proposed ABAL method.