Abstract:Inferring properties of graph-structured data, e.g., the solubility of molecules, essentially involves learning the implicit mapping from graphs to their properties. This learning process is often costly for graph property learners like Graph Convolutional Networks (GCNs). To address this, we propose a paradigm called Graph Neural Teaching (GraNT) that reinterprets the learning process through a novel nonparametric teaching perspective. Specifically, the latter offers a theoretical framework for teaching implicitly defined (i.e., nonparametric) mappings via example selection. Such an implicit mapping is realized by a dense set of graph-property pairs, with the GraNT teacher selecting a subset of them to promote faster convergence in GCN training. By analytically examining the impact of graph structure on parameter-based gradient descent during training, and recasting the evolution of GCNs--shaped by parameter updates--through functional gradient descent in nonparametric teaching, we show for the first time that teaching graph property learners (i.e., GCNs) is consistent with teaching structure-aware nonparametric learners. These new findings readily commit GraNT to enhancing learning efficiency of the graph property learner, showing significant reductions in training time for graph-level regression (-36.62%), graph-level classification (-38.19%), node-level regression (-30.97%) and node-level classification (-47.30%), all while maintaining its generalization performance.
Abstract:The development of edge computing places critical demands on energy-efficient model deployment for multiple-input multiple-output (MIMO) detection tasks. Deploying deep unfolding models such as PGD-Nets and ADMM-Nets into resource-constrained edge devices using quantization methods is challenging. Existing quantization methods based on quantization aware training (QAT) suffer from performance degradation due to their reliance on parametric distribution assumption of activations and static quantization step sizes. To address these challenges, this paper proposes a novel kernel-based adaptive quantization (KAQ) framework for deep unfolding networks. By utilizing a joint kernel density estimation (KDE) and maximum mean discrepancy (MMD) approach to align activation distributions between full-precision and quantized models, the need for prior distribution assumptions is eliminated. Additionally, a dynamic step size updating method is introduced to adjust the quantization step size based on the channel conditions of wireless networks. Extensive simulations demonstrate that the accuracy of proposed KAQ framework outperforms traditional methods and successfully reduces the model's inference latency.
Abstract:In the realm of activity detection for massive machine-type communications, intelligent reflecting surfaces (IRS) have shown significant potential in enhancing coverage for devices lacking direct connections to the base station (BS). However, traditional activity detection methods are typically designed for a single type of channel model, which does not reflect the complexities of real-world scenarios, particularly in systems incorporating IRS. To address this challenge, this paper introduces a novel approach that combines model-driven deep unfolding with a mixture of experts (MoE) framework. By automatically selecting one of three expert designs and applying it to the unfolded projected gradient method, our approach eliminates the need for prior knowledge of channel types between devices and the BS. Simulation results demonstrate that the proposed MoE-augmented deep unfolding method surpasses the traditional covariance-based method and black-box neural network design, delivering superior detection performance under mixed channel fading conditions.