Abstract:Jointly processing information from multiple sensors is crucial to achieving accurate and robust perception for reliable autonomous driving systems. However, current 3D perception research follows a modality-specific paradigm, leading to additional computation overheads and inefficient collaboration between different sensor data. In this paper, we present an efficient multi-modal backbone for outdoor 3D perception named UniTR, which processes a variety of modalities with unified modeling and shared parameters. Unlike previous works, UniTR introduces a modality-agnostic transformer encoder to handle these view-discrepant sensor data for parallel modal-wise representation learning and automatic cross-modal interaction without additional fusion steps. More importantly, to make full use of these complementary sensor types, we present a novel multi-modal integration strategy by both considering semantic-abundant 2D perspective and geometry-aware 3D sparse neighborhood relations. UniTR is also a fundamentally task-agnostic backbone that naturally supports different 3D perception tasks. It sets a new state-of-the-art performance on the nuScenes benchmark, achieving +1.1 NDS higher for 3D object detection and +12.0 higher mIoU for BEV map segmentation with lower inference latency. Code will be available at https://github.com/Haiyang-W/UniTR .
Abstract:In generative modeling, numerous successful approaches leverage a low-dimensional latent space, e.g., Stable Diffusion models the latent space induced by an encoder and generates images through a paired decoder. Although the selection of the latent space is empirically pivotal, determining the optimal choice and the process of identifying it remain unclear. In this study, we aim to shed light on this under-explored topic by rethinking the latent space from the perspective of model complexity. Our investigation starts with the classic generative adversarial networks (GANs). Inspired by the GAN training objective, we propose a novel "distance" between the latent and data distributions, whose minimization coincides with that of the generator complexity. The minimizer of this distance is characterized as the optimal data-dependent latent that most effectively capitalizes on the generator's capacity. Then, we consider parameterizing such a latent distribution by an encoder network and propose a two-stage training strategy called Decoupled Autoencoder (DAE), where the encoder is only updated in the first stage with an auxiliary decoder and then frozen in the second stage while the actual decoder is being trained. DAE can improve the latent distribution and as a result, improve the generative performance. Our theoretical analyses are corroborated by comprehensive experiments on various models such as VQGAN and Diffusion Transformer, where our modifications yield significant improvements in sample quality with decreased model complexity.
Abstract:Domain generalization (DG) is about learning models that generalize well to new domains that are related to, but different from, the training domain(s). It is a fundamental problem in machine learning and has attracted much attention in recent years. A large number of approaches have been proposed. Different approaches are motivated from different perspectives, making it difficult to gain an overall understanding of the area. In this paper, we propose a causal framework for domain generalization and present an understanding of common DG approaches in the framework. Our work sheds new lights on the following questions: (1) What are the key ideas behind each DG method? (2) Why is it expected to improve generalization to new domains theoretically? (3) How are different DG methods related to each other and what are relative advantages and limitations? By providing a unified perspective on DG, we hope to help researchers better understand the underlying principles and develop more effective approaches for this critical problem in machine learning.
Abstract:Despite the stunning ability to generate high-quality images by recent text-to-image models, current approaches often struggle to effectively compose objects with different attributes and relationships into a complex and coherent scene. We propose T2I-CompBench, a comprehensive benchmark for open-world compositional text-to-image generation, consisting of 6,000 compositional text prompts from 3 categories (attribute binding, object relationships, and complex compositions) and 6 sub-categories (color binding, shape binding, texture binding, spatial relationships, non-spatial relationships, and complex compositions). We further propose several evaluation metrics specifically designed to evaluate compositional text-to-image generation. We introduce a new approach, Generative mOdel fine-tuning with Reward-driven Sample selection (GORS), to boost the compositional text-to-image generation abilities of pretrained text-to-image models. Extensive experiments and evaluations are conducted to benchmark previous methods on T2I-CompBench, and to validate the effectiveness of our proposed evaluation metrics and GORS approach. Project page is available at https://karine-h.github.io/T2I-CompBench/.
Abstract:Generative models can be categorized into two types: explicit generative models that define explicit density forms and allow exact likelihood inference, such as score-based diffusion models (SDMs) and normalizing flows; implicit generative models that directly learn a transformation from the prior to the data distribution, such as generative adversarial nets (GANs). While these two types of models have shown great success, they suffer from respective limitations that hinder them from achieving fast sampling and high sample quality simultaneously. In this paper, we propose a unified theoretic framework for SDMs and GANs. We shown that: i) the learning dynamics of both SDMs and GANs can be described as a novel SDE named Discriminator Denoising Diffusion Flow (DiffFlow) where the drift can be determined by some weighted combinations of scores of the real data and the generated data; ii) By adjusting the relative weights between different score terms, we can obtain a smooth transition between SDMs and GANs while the marginal distribution of the SDE remains invariant to the change of the weights; iii) we prove the asymptotic optimality and maximal likelihood training scheme of the DiffFlow dynamics; iv) under our unified theoretic framework, we introduce several instantiations of the DiffFLow that provide new algorithms beyond GANs and SDMs with exact likelihood inference and have potential to achieve flexible trade-off between high sample quality and fast sampling speed.
Abstract:Energy-Based Models (EBMs) have been widely used for generative modeling. Contrastive Divergence (CD), a prevailing training objective for EBMs, requires sampling from the EBM with Markov Chain Monte Carlo methods (MCMCs), which leads to an irreconcilable trade-off between the computational burden and the validity of the CD. Running MCMCs till convergence is computationally intensive. On the other hand, short-run MCMC brings in an extra non-negligible parameter gradient term that is difficult to handle. In this paper, we provide a general interpretation of CD, viewing it as a special instance of our proposed Diffusion Contrastive Divergence (DCD) family. By replacing the Langevin dynamic used in CD with other EBM-parameter-free diffusion processes, we propose a more efficient divergence. We show that the proposed DCDs are both more computationally efficient than the CD and are not limited to a non-negligible gradient term. We conduct intensive experiments, including both synthesis data modeling and high-dimensional image denoising and generation, to show the advantages of the proposed DCDs. On the synthetic data learning and image denoising experiments, our proposed DCD outperforms CD by a large margin. In image generation experiments, the proposed DCD is capable of training an energy-based model for generating the Celab-A $32\times 32$ dataset, which is comparable to existing EBMs.
Abstract:Recent Diffusion Transformers (e.g., DiT) have demonstrated their powerful effectiveness in generating high-quality 2D images. However, it is still being determined whether the Transformer architecture performs equally well in 3D shape generation, as previous 3D diffusion methods mostly adopted the U-Net architecture. To bridge this gap, we propose a novel Diffusion Transformer for 3D shape generation, namely DiT-3D, which can directly operate the denoising process on voxelized point clouds using plain Transformers. Compared to existing U-Net approaches, our DiT-3D is more scalable in model size and produces much higher quality generations. Specifically, the DiT-3D adopts the design philosophy of DiT but modifies it by incorporating 3D positional and patch embeddings to adaptively aggregate input from voxelized point clouds. To reduce the computational cost of self-attention in 3D shape generation, we incorporate 3D window attention into Transformer blocks, as the increased 3D token length resulting from the additional dimension of voxels can lead to high computation. Finally, linear and devoxelization layers are used to predict the denoised point clouds. In addition, our transformer architecture supports efficient fine-tuning from 2D to 3D, where the pre-trained DiT-2D checkpoint on ImageNet can significantly improve DiT-3D on ShapeNet. Experimental results on the ShapeNet dataset demonstrate that the proposed DiT-3D achieves state-of-the-art performance in high-fidelity and diverse 3D point cloud generation. In particular, our DiT-3D decreases the 1-Nearest Neighbor Accuracy of the state-of-the-art method by 4.59 and increases the Coverage metric by 3.51 when evaluated on Chamfer Distance.
Abstract:We introduce a new diffusion-based approach for shape completion on 3D range scans. Compared with prior deterministic and probabilistic methods, we strike a balance between realism, multi-modality, and high fidelity. We propose DiffComplete by casting shape completion as a generative task conditioned on the incomplete shape. Our key designs are two-fold. First, we devise a hierarchical feature aggregation mechanism to inject conditional features in a spatially-consistent manner. So, we can capture both local details and broader contexts of the conditional inputs to control the shape completion. Second, we propose an occupancy-aware fusion strategy in our model to enable the completion of multiple partial shapes and introduce higher flexibility on the input conditions. DiffComplete sets a new SOTA performance (e.g., 40% decrease on l_1 error) on two large-scale 3D shape completion benchmarks. Our completed shapes not only have a realistic outlook compared with the deterministic methods but also exhibit high similarity to the ground truths compared with the probabilistic alternatives. Further, DiffComplete has strong generalizability on objects of entirely unseen classes for both synthetic and real data, eliminating the need for model re-training in various applications.
Abstract:Diffusion models have attracted significant attention due to their remarkable ability to create content and generate data for tasks such as image classification. However, the usage of diffusion models to generate high-quality object detection data remains an underexplored area, where not only the image-level perceptual quality but also geometric conditions such as bounding boxes and camera views are essential. Previous studies have utilized either copy-paste synthesis or layout-to-image (L2I) generation with specifically designed modules to encode semantic layouts. In this paper, we propose GeoDiffusion, a simple framework that can flexibly translate various geometric conditions into text prompts and empower the pre-trained text-to-image (T2I) diffusion models for high-quality detection data generation. Unlike previous L2I methods, our GeoDiffusion is able to encode not only bounding boxes but also extra geometric conditions such as camera views in self-driving scenes. Extensive experiments demonstrate GeoDiffusion outperforms previous L2I methods while maintaining 4x training time faster. To the best of our knowledge, this is the first work to adopt diffusion models for layout-to-image generation with geometric conditions and demonstrate that L2I-generated images can be beneficial for improving the performance of object detectors.
Abstract:The proliferation of pretrained models, as a result of advancements in pretraining techniques, has led to the emergence of a vast zoo of publicly available models. Effectively utilizing these resources to obtain models with robust out-of-distribution generalization capabilities for downstream tasks has become a crucial area of research. Previous research has primarily focused on identifying the most powerful models within the model zoo, neglecting to fully leverage the diverse inductive biases contained within. This paper argues that the knowledge contained in weaker models is valuable and presents a method for leveraging the diversity within the model zoo to improve out-of-distribution generalization capabilities. Specifically, we investigate the behaviors of various pretrained models across different domains of downstream tasks by characterizing the variations in their encoded representations in terms of two dimensions: diversity shift and correlation shift. This characterization enables us to propose a new algorithm for integrating diverse pretrained models, not limited to the strongest models, in order to achieve enhanced out-of-distribution generalization performance. Our proposed method demonstrates state-of-the-art empirical results on a variety of datasets, thus validating the benefits of utilizing diverse knowledge.