Building AIs with adaptive behaviors in human-AI cooperation stands as a pivotal focus in AGI research. Current methods for developing cooperative agents predominantly rely on learning-based methods, where policy generalization heavily hinges on past interactions with specific teammates. These approaches constrain the agent's capacity to recalibrate its strategy when confronted with novel teammates. We propose \textbf{ProAgent}, a novel framework that harnesses large language models (LLMs) to fashion a \textit{pro}active \textit{agent} empowered with the ability to anticipate teammates' forthcoming decisions and formulate enhanced plans for itself. ProAgent excels at cooperative reasoning with the capacity to dynamically adapt its behavior to enhance collaborative efforts with teammates. Moreover, the ProAgent framework exhibits a high degree of modularity and interpretability, facilitating seamless integration to address a wide array of coordination scenarios. Experimental evaluations conducted within the framework of \textit{Overcook-AI} unveil the remarkable performance superiority of ProAgent, outperforming five methods based on self-play and population-based training in cooperation with AI agents. Further, when cooperating with human proxy models, its performance exhibits an average improvement exceeding 10\% compared to the current state-of-the-art, COLE. The advancement was consistently observed across diverse scenarios involving interactions with both AI agents of varying characteristics and human counterparts. These findings inspire future research for human-robot collaborations. For a hands-on demonstration, please visit \url{https://pku-proagent.github.io}.
The emergent capabilities of Large Language Models (LLMs) have made it crucial to align their values with those of humans. Current methodologies typically attempt alignment with a homogeneous human value and requires human verification, yet lack consensus on the desired aspect and depth of alignment and resulting human biases. In this paper, we propose A2EHV, an Automated Alignment Evaluation with a Heterogeneous Value system that (1) is automated to minimize individual human biases, and (2) allows assessments against various target values to foster heterogeneous agents. Our approach pivots on the concept of value rationality, which represents the ability for agents to execute behaviors that satisfy a target value the most. The quantification of value rationality is facilitated by the Social Value Orientation framework from social psychology, which partitions the value space into four categories to assess social preferences from agents' behaviors. We evaluate the value rationality of eight mainstream LLMs and observe that large models are more inclined to align neutral values compared to those with strong personal values. By examining the behavior of these LLMs, we contribute to a deeper understanding of value alignment within a heterogeneous value system.
Centralized Training with Decentralized Execution (CTDE) has been proven to be an effective paradigm in cooperative multi-agent reinforcement learning (MARL). One of the major challenges is yet credit assignment, which aims to credit agents by their contributions. Prior studies focus on either implicitly decomposing the joint value function or explicitly computing the payoff distribution of all agents. However, in episodic reinforcement learning settings where global rewards can only be revealed at the end of the episode, existing methods usually fail to work. They lack the functionality of modeling complicated relations of the delayed global reward in the temporal dimension and suffer from large variance and bias. We propose a novel method named Spatial-Temporal Attention with Shapley (STAS) for return decomposition; STAS learns credit assignment in both the temporal and the spatial dimension. It first decomposes the global return back to each time step, then utilizes Shapley Value to redistribute the individual payoff from the decomposed global reward. To mitigate the computational complexity of Shapley Value, we introduce an approximation of marginal contribution and utilize Monte Carlo sampling to estimate Shapley Value. We evaluate our method on the classical Alice & Bob example and Multi-agent Particle Environments benchmarks across different scenarios, and we show our methods achieve an effective spatial-temporal credit assignment and outperform all state-of-art baselines.
The pretrain-finetuning paradigm in large-scale sequence models has made significant progress in natural language processing and computer vision tasks. However, such a paradigm is still hindered by several challenges in Reinforcement Learning (RL), including the lack of self-supervised pretraining algorithms based on offline data and efficient fine-tuning/prompt-tuning over unseen downstream tasks. In this work, we explore how prompts can improve sequence modeling-based offline reinforcement learning (offline-RL) algorithms. Firstly, we propose prompt tuning for offline RL, where a context vector sequence is concatenated with the input to guide the conditional policy generation. As such, we can pretrain a model on the offline dataset with self-supervised loss and learn a prompt to guide the policy towards desired actions. Secondly, we extend our framework to Meta-RL settings and propose Contextual Meta Transformer (CMT); CMT leverages the context among different tasks as the prompt to improve generalization on unseen tasks. We conduct extensive experiments across three different offline-RL settings: offline single-agent RL on the D4RL dataset, offline Meta-RL on the MuJoCo benchmark, and offline MARL on the SMAC benchmark. Superior results validate the strong performance, and generality of our methods.
While Transformers have had significant success in paragraph generation, they treat sentences as linear sequences of tokens and often neglect their hierarchical information. Prior work has shown that decomposing the levels of granularity~(e.g., word, phrase, or sentence) for input tokens has produced substantial improvements, suggesting the possibility of enhancing Transformers via more fine-grained modeling of granularity. In this work, we propose a continuous decomposition of granularity for neural paraphrase generation (C-DNPG). In order to efficiently incorporate granularity into sentence encoding, C-DNPG introduces a granularity-aware attention (GA-Attention) mechanism which extends the multi-head self-attention with: 1) a granularity head that automatically infers the hierarchical structure of a sentence by neurally estimating the granularity level of each input token; and 2) two novel attention masks, namely, granularity resonance and granularity scope, to efficiently encode granularity into attention. Experiments on two benchmarks, including Quora question pairs and Twitter URLs have shown that C-DNPG outperforms baseline models by a remarkable margin and achieves state-of-the-art results in terms of many metrics. Qualitative analysis reveals that C-DNPG indeed captures fine-grained levels of granularity with effectiveness.