Abstract:Understanding surveillance video content remains a critical yet underexplored challenge in vision-language research, particularly due to its real-world complexity, irregular event dynamics, and safety-critical implications. In this work, we introduce SurveillanceVQA-589K, the largest open-ended video question answering benchmark tailored to the surveillance domain. The dataset comprises 589,380 QA pairs spanning 12 cognitively diverse question types, including temporal reasoning, causal inference, spatial understanding, and anomaly interpretation, across both normal and abnormal video scenarios. To construct the benchmark at scale, we design a hybrid annotation pipeline that combines temporally aligned human-written captions with Large Vision-Language Model-assisted QA generation using prompt-based techniques. We also propose a multi-dimensional evaluation protocol to assess contextual, temporal, and causal comprehension. We evaluate eight LVLMs under this framework, revealing significant performance gaps, especially in causal and anomaly-related tasks, underscoring the limitations of current models in real-world surveillance contexts. Our benchmark provides a practical and comprehensive resource for advancing video-language understanding in safety-critical applications such as intelligent monitoring, incident analysis, and autonomous decision-making.
Abstract:Benefiting from recent advancements in large language models and modality alignment techniques, existing Large Vision-Language Models(LVLMs) have achieved prominent performance across a wide range of scenarios. However, the excessive computational complexity limits the widespread use of these models in practical applications. We argue that one main bottleneck in computational complexity is caused by the involvement of redundant vision sequences in model computation. This is inspired by a reassessment of the efficiency of vision and language information transmission in the language decoder of LVLMs. Then, we propose a novel hierarchical vision-language interaction mechanism called Hierarchical Vision injection for Mixture Attention (HiMix). In HiMix, only the language sequence undergoes full forward propagation, while the vision sequence interacts with the language at specific stages within each language decoder layer. It is striking that our approach significantly reduces computational complexity with minimal performance loss. Specifically, HiMix achieves a 10x reduction in the computational cost of the language decoder across multiple LVLM models while maintaining comparable performance. This highlights the advantages of our method, and we hope our research brings new perspectives to the field of vision-language understanding. Project Page: https://xuange923.github.io/HiMix
Abstract:Surveillance videos are an essential component of daily life with various critical applications, particularly in public security. However, current surveillance video tasks mainly focus on classifying and localizing anomalous events. Existing methods are limited to detecting and classifying the predefined events with unsatisfactory generalization ability and semantic understanding, although they have obtained considerable performance. To address this issue, we propose constructing the first multimodal surveillance video dataset by manually annotating the real-world surveillance dataset UCF-Crime with fine-grained event content and timing. Our newly annotated dataset, UCA (UCF-Crime Annotation), provides a novel benchmark for multimodal surveillance video analysis. It not only describes events in detailed descriptions but also provides precise temporal grounding of the events in 0.1-second intervals. UCA contains 20,822 sentences, with an average length of 23 words, and its annotated videos are as long as 102 hours. Furthermore, we benchmark the state-of-the-art models of multiple multimodal tasks on this newly created dataset, including temporal sentence grounding in videos, video captioning, and dense video captioning. Through our experiments, we found that mainstream models used in previously publicly available datasets perform poorly on multimodal surveillance video scenarios, which highlights the necessity of constructing this dataset. The link to our dataset and code is provided at: https://github.com/Xuange923/UCA-dataset.