Alert button
Picture for Dengjie Li

Dengjie Li

Alert button

Zero-Shot Semantic Segmentation with Decoupled One-Pass Network

Apr 03, 2023
Cong Han, Yujie Zhong, Dengjie Li, Kai Han, Lin Ma

Figure 1 for Zero-Shot Semantic Segmentation with Decoupled One-Pass Network
Figure 2 for Zero-Shot Semantic Segmentation with Decoupled One-Pass Network
Figure 3 for Zero-Shot Semantic Segmentation with Decoupled One-Pass Network
Figure 4 for Zero-Shot Semantic Segmentation with Decoupled One-Pass Network

Recently, the zero-shot semantic segmentation problem has attracted increasing attention, and the best performing methods are based on two-stream networks: one stream for proposal mask generation and the other for segment classification using a pre-trained visual-language model. However, existing two-stream methods require passing a great number of (up to a hundred) image crops into the visuallanguage model, which is highly inefficient. To address the problem, we propose a network that only needs a single pass through the visual-language model for each input image. Specifically, we first propose a novel network adaptation approach, termed patch severance, to restrict the harmful interference between the patch embeddings in the pre-trained visual encoder. We then propose classification anchor learning to encourage the network to spatially focus on more discriminative features for classification. Extensive experiments demonstrate that the proposed method achieves outstanding performance, surpassing state-of-theart methods while being 4 to 7 times faster at inference. We release our code at https://github.com/CongHan0808/DeOP.git.

* 13pages, 9 figures 
Viaarxiv icon

DiP: Learning Discriminative Implicit Parts for Person Re-Identification

Dec 24, 2022
Dengjie Li, Siyu Chen, Yujie Zhong, Fan Liang, Lin Ma

Figure 1 for DiP: Learning Discriminative Implicit Parts for Person Re-Identification
Figure 2 for DiP: Learning Discriminative Implicit Parts for Person Re-Identification
Figure 3 for DiP: Learning Discriminative Implicit Parts for Person Re-Identification
Figure 4 for DiP: Learning Discriminative Implicit Parts for Person Re-Identification

In person re-identification (ReID) tasks, many works explore the learning of part features to improve the performance over global image features. Existing methods extract part features in an explicit manner, by either using a hand-designed image division or keypoints obtained with external visual systems. In this work, we propose to learn Discriminative implicit Parts (DiPs) which are decoupled from explicit body parts. Therefore, DiPs can learn to extract any discriminative features that can benefit in distinguishing identities, which is beyond predefined body parts (such as accessories). Moreover, we propose a novel implicit position to give a geometric interpretation for each DiP. The implicit position can also serve as a learning signal to encourage DiPs to be more position-equivariant with the identity in the image. Lastly, a set of attributes and auxiliary losses are introduced to further improve the learning of DiPs. Extensive experiments show that the proposed method achieves state-of-the-art performance on multiple person ReID benchmarks.

Viaarxiv icon

SoccerNet 2022 Challenges Results

Oct 05, 2022
Silvio Giancola, Anthony Cioppa, Adrien Deliège, Floriane Magera, Vladimir Somers, Le Kang, Xin Zhou, Olivier Barnich, Christophe De Vleeschouwer, Alexandre Alahi, Bernard Ghanem, Marc Van Droogenbroeck, Abdulrahman Darwish, Adrien Maglo, Albert Clapés, Andreas Luyts, Andrei Boiarov, Artur Xarles, Astrid Orcesi, Avijit Shah, Baoyu Fan, Bharath Comandur, Chen Chen, Chen Zhang, Chen Zhao, Chengzhi Lin, Cheuk-Yiu Chan, Chun Chuen Hui, Dengjie Li, Fan Yang, Fan Liang, Fang Da, Feng Yan, Fufu Yu, Guanshuo Wang, H. Anthony Chan, He Zhu, Hongwei Kan, Jiaming Chu, Jianming Hu, Jianyang Gu, Jin Chen, João V. B. Soares, Jonas Theiner, Jorge De Corte, José Henrique Brito, Jun Zhang, Junjie Li, Junwei Liang, Leqi Shen, Lin Ma, Lingchi Chen, Miguel Santos Marques, Mike Azatov, Nikita Kasatkin, Ning Wang, Qiong Jia, Quoc Cuong Pham, Ralph Ewerth, Ran Song, Rengang Li, Rikke Gade, Ruben Debien, Runze Zhang, Sangrok Lee, Sergio Escalera, Shan Jiang, Shigeyuki Odashima, Shimin Chen, Shoichi Masui, Shouhong Ding, Sin-wai Chan, Siyu Chen, Tallal El-Shabrawy, Tao He, Thomas B. Moeslund, Wan-Chi Siu, Wei Zhang, Wei Li, Xiangwei Wang, Xiao Tan, Xiaochuan Li, Xiaolin Wei, Xiaoqing Ye, Xing Liu, Xinying Wang, Yandong Guo, Yaqian Zhao, Yi Yu, Yingying Li, Yue He, Yujie Zhong, Zhenhua Guo, Zhiheng Li

Figure 1 for SoccerNet 2022 Challenges Results
Figure 2 for SoccerNet 2022 Challenges Results
Figure 3 for SoccerNet 2022 Challenges Results
Figure 4 for SoccerNet 2022 Challenges Results

The SoccerNet 2022 challenges were the second annual video understanding challenges organized by the SoccerNet team. In 2022, the challenges were composed of 6 vision-based tasks: (1) action spotting, focusing on retrieving action timestamps in long untrimmed videos, (2) replay grounding, focusing on retrieving the live moment of an action shown in a replay, (3) pitch localization, focusing on detecting line and goal part elements, (4) camera calibration, dedicated to retrieving the intrinsic and extrinsic camera parameters, (5) player re-identification, focusing on retrieving the same players across multiple views, and (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams. Compared to last year's challenges, tasks (1-2) had their evaluation metrics redefined to consider tighter temporal accuracies, and tasks (3-6) were novel, including their underlying data and annotations. More information on the tasks, challenges and leaderboards are available on https://www.soccer-net.org. Baselines and development kits are available on https://github.com/SoccerNet.

* Accepted at ACM MMSports 2022 
Viaarxiv icon

Video Temporal Relationship Mining for Data-Efficient Person Re-identification

Oct 01, 2021
Siyu Chen, Dengjie Li, Lishuai Gao, Fan Liang, Wei Zhang, Lin Ma

Figure 1 for Video Temporal Relationship Mining for Data-Efficient Person Re-identification
Figure 2 for Video Temporal Relationship Mining for Data-Efficient Person Re-identification
Figure 3 for Video Temporal Relationship Mining for Data-Efficient Person Re-identification
Figure 4 for Video Temporal Relationship Mining for Data-Efficient Person Re-identification

This paper is a technical report to our submission to the ICCV 2021 VIPriors Re-identification Challenge. In order to make full use of the visual inductive priors of the data, we treat the query and gallery images of the same identity as continuous frames in a video sequence. And we propose one novel post-processing strategy for video temporal relationship mining, which not only calculates the distance matrix between query and gallery images, but also the matrix between gallery images. The initial query image is used to retrieve the most similar image from the gallery, then the retrieved image is treated as a new query to retrieve its most similar image from the gallery. By iteratively searching for the closest image, we can achieve accurate image retrieval and finally obtain a robust retrieval sequence.

Viaarxiv icon