The emergence of large language models (LLMs) has sparked significant interest in extending their remarkable language capabilities to speech. However, modality alignment between speech and text still remains an open problem. Current solutions can be categorized into two strategies. One is a cascaded approach where outputs (tokens or states) of a separately trained speech recognition system are used as inputs for LLMs, which limits their potential in modeling alignment between speech and text. The other is an end-to-end approach that relies on speech instruction data, which is very difficult to collect in large quantities. In this paper, we address these issues and propose the BLSP approach that Bootstraps Language-Speech Pre-training via behavior alignment of continuation writing. We achieve this by learning a lightweight modality adapter between a frozen speech encoder and an LLM, ensuring that the LLM exhibits the same generation behavior regardless of the modality of input: a speech segment or its transcript. The training process can be divided into two steps. The first step prompts an LLM to generate texts with speech transcripts as prefixes, obtaining text continuations. In the second step, these continuations are used as supervised signals to train the modality adapter in an end-to-end manner. We demonstrate that this straightforward process can extend the capabilities of LLMs to speech, enabling speech recognition, speech translation, spoken language understanding, and speech conversation, even in zero-shot cross-lingual scenarios.
Augmented Language Models (ALMs) empower large language models with the ability to use tools, transforming them into intelligent agents for real-world interactions. However, most existing frameworks for ALMs, to varying degrees, are deficient in the following critical features: flexible customization, collaborative democratization, and holistic evaluation. We present gentopia, an ALM framework enabling flexible customization of agents through simple configurations, seamlessly integrating various language models, task formats, prompting modules, and plugins into a unified paradigm. Furthermore, we establish gentpool, a public platform enabling the registration and sharing of user-customized agents. Agents registered in gentpool are composable such that they can be assembled together for agent collaboration, advancing the democratization of artificial intelligence. To ensure high-quality agents, gentbench, an integral component of gentpool, is designed to thoroughly evaluate user-customized agents across diverse aspects such as safety, robustness, efficiency, etc. We release gentopia on Github and will continuously move forward.
Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized usage of data during the training process. One example is when a model trainer collects a set of images created by a particular artist and attempts to train a model capable of generating similar images without obtaining permission from the artist. To address this issue, it becomes crucial to detect unauthorized data usage. In this paper, we propose a method for detecting such unauthorized data usage by planting injected memorization into the text-to-image diffusion models trained on the protected dataset. Specifically, we modify the protected image dataset by adding unique contents on the images such as stealthy image wrapping functions that are imperceptible to human vision but can be captured and memorized by diffusion models. By analyzing whether the model has memorization for the injected content (i.e., whether the generated images are processed by the chosen post-processing function), we can detect models that had illegally utilized the unauthorized data. Our experiments conducted on Stable Diffusion and LoRA model demonstrate the effectiveness of the proposed method in detecting unauthorized data usages.
Grasping objects is a fundamental yet important capability of robots, and many tasks such as sorting and picking rely on this skill. The prerequisite for stable grasping is the ability to correctly identify suitable grasping positions. However, finding appropriate grasping points is challenging due to the diverse shapes, varying density distributions, and significant differences between the barycenter of various objects. In the past few years, researchers have proposed many methods to address the above-mentioned issues and achieved very good results on publicly available datasets such as the Cornell dataset and the Jacquard dataset. The problem is that the backgrounds of Cornell and Jacquard datasets are relatively simple - typically just a whiteboard, while in real-world operational environments, the background could be complex and noisy. Moreover, in real-world scenarios, robots usually only need to grasp fixed types of objects. To address the aforementioned issues, we proposed a large-scale grasp detection dataset called NBMOD: Noisy Background Multi-Object Dataset for grasp detection, which consists of 31,500 RGB-D images of 20 different types of fruits. Accurate prediction of angles has always been a challenging problem in the detection task of oriented bounding boxes. This paper presents a Rotation Anchor Mechanism (RAM) to address this issue. Considering the high real-time requirement of robotic systems, we propose a series of lightweight architectures called RA-GraspNet (GraspNet with Rotation Anchor): RARA (network with Rotation Anchor and Region Attention), RAST (network with Rotation Anchor and Semi Transformer), and RAGT (network with Rotation Anchor and Global Transformer) to tackle this problem. Among them, the RAGT-3/3 model achieves an accuracy of 99% on the NBMOD dataset. The NBMOD and our code are available at https://github.com/kmittle/Grasp-Detection-NBMOD.
Advanced persistent threats (APTs) have novel features such as multi-stage penetration, highly-tailored intention, and evasive tactics. APTs defense requires fusing multi-dimensional Cyber threat intelligence data to identify attack intentions and conducts efficient knowledge discovery strategies by data-driven machine learning to recognize entity relationships. However, data-driven machine learning lacks generalization ability on fresh or unknown samples, reducing the accuracy and practicality of the defense model. Besides, the private deployment of these APT defense models on heterogeneous environments and various network devices requires significant investment in context awareness (such as known attack entities, continuous network states, and current security strategies). In this paper, we propose a few-shot multi-domain knowledge rearming (FMKR) scheme for context-aware defense against APTs. By completing multiple small tasks that are generated from different network domains with meta-learning, the FMKR firstly trains a model with good discrimination and generalization ability for fresh and unknown APT attacks. In each FMKR task, both threat intelligence and local entities are fused into the support/query sets in meta-learning to identify possible attack stages. Secondly, to rearm current security strategies, an finetuning-based deployment mechanism is proposed to transfer learned knowledge into the student model, while minimizing the defense cost. Compared to multiple model replacement strategies, the FMKR provides a faster response to attack behaviors while consuming less scheduling cost. Based on the feedback from multiple real users of the Industrial Internet of Things (IIoT) over 2 months, we demonstrate that the proposed scheme can improve the defense satisfaction rate.
We present Multiscale Multiview Vision Transformers (MMViT), which introduces multiscale feature maps and multiview encodings to transformer models. Our model encodes different views of the input signal and builds several channel-resolution feature stages to process the multiple views of the input at different resolutions in parallel. At each scale stage, we use a cross-attention block to fuse information across different views. This enables the MMViT model to acquire complex high-dimensional representations of the input at different resolutions. The proposed model can serve as a backbone model in multiple domains. We demonstrate the effectiveness of MMViT on audio and image classification tasks, achieving state-of-the-art results.
Ethylene leakage detection has become one of the most important research directions in the field of target detection due to the fact that ethylene leakage in the petrochemical industry is closely related to production safety and environmental pollution. Under infrared conditions, there are many factors that affect the texture characteristics of ethylene, such as ethylene concentration, background, and so on. We find that the detection criteria used in infrared imaging ethylene leakage detection research cannot fully reflect real-world production conditions, which is not conducive to evaluate the performance of current image-based target detection methods. Therefore, we create a new infrared image dataset of ethylene leakage with different concentrations and backgrounds, including 54275 images. We use the proposed dataset benchmark to evaluate seven advanced image-based target detection algorithms. Experimental results demonstrate the performance and limitations of existing algorithms, and the dataset benchmark has good versatility and effectiveness.
This paper presents our submission to the Expression Classification Challenge of the fifth Affective Behavior Analysis in-the-wild (ABAW) Competition. In our method, multimodal feature combinations extracted by several different pre-trained models are applied to capture more effective emotional information. For these combinations of visual and audio modal features, we utilize two temporal encoders to explore the temporal contextual information in the data. In addition, we employ several ensemble strategies for different experimental settings to obtain the most accurate expression recognition results. Our system achieves the average F1 Score of 0.45774 on the validation set.
Federated learning provides a privacy-aware learning framework by enabling participants to jointly train models without exposing their private data. However, federated learning has exhibited vulnerabilities to Byzantine attacks, where the adversary aims to destroy the convergence and performance of the global model. Meanwhile, we observe that most existing robust AGgregation Rules (AGRs) fail to stop the aggregated gradient deviating from the optimal gradient (the average of honest gradients) in the non-IID setting. We attribute the reason of the failure of these AGRs to two newly proposed concepts: identification failure and integrity failure. The identification failure mainly comes from the exacerbated curse of dimensionality in the non-IID setting. The integrity failure is a combined result of conservative filtering strategy and gradient heterogeneity. In order to address both failures, we propose GAIN, a gradient decomposition scheme that can help adapt existing robust algorithms to heterogeneous datasets. We also provide convergence analysis for integrating existing robust AGRs into GAIN. Experiments on various real-world datasets verify the efficacy of our proposed GAIN.