Abstract:In this paper, a novel covert semantic communication framework is investigated. Within this framework, a server extracts and transmits the semantic information, i.e., the meaning of image data, to a user over several time slots. An attacker seeks to detect and eavesdrop the semantic transmission to acquire details of the original image. To avoid data meaning being eavesdropped by an attacker, a friendly jammer is deployed to transmit jamming signals to interfere the attacker so as to hide the transmitted semantic information. Meanwhile, the server will strategically select time slots for semantic information transmission. Due to limited energy, the jammer will not communicate with the server and hence the server does not know the transmit power of the jammer. Therefore, the server must jointly optimize the semantic information transmitted at each time slot and the corresponding transmit power to maximize the privacy and the semantic information transmission quality of the user. To solve this problem, we propose a prioritised sampling assisted twin delayed deep deterministic policy gradient algorithm to jointly determine the transmitted semantic information and the transmit power per time slot without the communications between the server and the jammer. Compared to standard reinforcement learning methods, the propose method uses an additional Q network to estimate Q values such that the agent can select the action with a lower Q value from the two Q networks thus avoiding local optimal action selection and estimation bias of Q values. Simulation results show that the proposed algorithm can improve the privacy and the semantic information transmission quality by up to 77.8% and 14.3% compared to the traditional reinforcement learning methods.
Abstract:In this paper, a secure and communication-efficient clustered federated learning (CFL) design is proposed. In our model, several base stations (BSs) with heterogeneous task-handling capabilities and multiple users with non-independent and identically distributed (non-IID) data jointly perform CFL training incorporating differential privacy (DP) techniques. Since each BS can process only a subset of the learning tasks and has limited wireless resource blocks (RBs) to allocate to users for federated learning (FL) model parameter transmission, it is necessary to jointly optimize RB allocation and user scheduling for CFL performance optimization. Meanwhile, our considered CFL method requires devices to use their limited data and FL model information to determine their task identities, which may introduce additional communication overhead. We formulate an optimization problem whose goal is to minimize the training loss of all learning tasks while considering device clustering, RB allocation, DP noise, and FL model transmission delay. To solve the problem, we propose a novel dynamic penalty function assisted value decomposed multi-agent reinforcement learning (DPVD-MARL) algorithm that enables distributed BSs to independently determine their connected users, RBs, and DP noise of the connected users but jointly minimize the training loss of all learning tasks across all BSs. Different from the existing MARL methods that assign a large penalty for invalid actions, we propose a novel penalty assignment scheme that assigns penalty depending on the number of devices that cannot meet communication constraints (e.g., delay), which can guide the MARL scheme to quickly find valid actions, thus improving the convergence speed. Simulation results show that the DPVD-MARL can improve the convergence rate by up to 20% and the ultimate accumulated rewards by 15% compared to independent Q-learning.
Abstract:In this paper, deceptive signal-assisted private split learning is investigated. In our model, several edge devices jointly perform collaborative training, and some eavesdroppers aim to collect the model and data information from devices. To prevent the eavesdroppers from collecting model and data information, a subset of devices can transmit deceptive signals. Therefore, it is necessary to determine the subset of devices used for deceptive signal transmission, the subset of model training devices, and the models assigned to each model training device. This problem is formulated as an optimization problem whose goal is to minimize the information leaked to eavesdroppers while meeting the model training energy consumption and delay constraints. To solve this problem, we propose a soft actor-critic deep reinforcement learning framework with intrinsic curiosity module and cross-attention (ICM-CA) that enables a centralized agent to determine the model training devices, the deceptive signal transmission devices, the transmit power, and sub-models assigned to each model training device without knowing the position and monitoring probability of eavesdroppers. The proposed method uses an ICM module to encourage the server to explore novel actions and states and a CA module to determine the importance of each historical state-action pair thus improving training efficiency. Simulation results demonstrate that the proposed method improves the convergence rate by up to 3x and reduces the information leaked to eavesdroppers by up to 13% compared to the traditional SAC algorithm.
Abstract:Recent studies have focused on leveraging large-scale artificial intelligence (LAI) models to improve semantic representation and compression capabilities. However, the substantial computational demands of LAI models pose significant challenges for real-time communication scenarios. To address this, this paper proposes utilizing knowledge distillation (KD) techniques to extract and condense knowledge from LAI models, effectively reducing model complexity and computation latency. Nevertheless, the inherent complexity of LAI models leads to prolonged inference times during distillation, while their lack of channel awareness compromises the distillation performance. These limitations make standard KD methods unsuitable for task-oriented semantic communication scenarios. To address these issues, we propose a fast distillation method featuring a pre-stored compression mechanism that eliminates the need for repetitive inference, significantly improving efficiency. Furthermore, a channel adaptive module is incorporated to dynamically adjust the transmitted semantic information based on varying channel conditions, enhancing communication reliability and adaptability. In addition, an information bottleneck-based loss function is derived to guide the fast distillation process. Simulation results verify that the proposed scheme outperform baselines in term of task accuracy, model size, computation latency, and training data requirements.
Abstract:Cellular vehicle-to-everything (C-V2X) networks provide a promising solution to improve road safety and traffic efficiency. One key challenge in such systems lies in meeting quality-of-service (QoS) requirements of vehicular communication links given limited network resources, particularly under imperfect channel state information (CSI) conditions caused by the highly dynamic environment. In this paper, a novel two-phase framework is proposed to instill resilience into C-V2X networks under unknown imperfect CSI. The resilience of the C-V2X network is defined, quantified, and optimized the first time through two principal dimensions: absorption phase and adaptation phase. Specifically, the probability distribution function (PDF) of the imperfect CSI is estimated during the absorption phase through dedicated absorption power scheme and resource block (RB) assignment. The estimated PDF is further used to analyze the interplay and reveal the tradeoff between these two phases. Then, a novel metric named hazard rate (HR) is exploited to balance the C-V2X network's prioritization on absorption and adaptation. Finally, the estimated PDF is exploited in the adaptation phase to recover the network's QoS through a real-time power allocation optimization. Simulation results demonstrate the superior capability of the proposed framework in sustaining the QoS of the C-V2X network under imperfect CSI. Specifically, in the adaptation phase, the proposed design reduces the vehicle-tovehicle (V2V) delay that exceeds QoS requirement by 35% and 56%, and improves the average vehicle-to-infrastructure (V2I) throughput by 14% and 16% compared to the model-based and data-driven benchmarks, respectively, without compromising the network's QoS in the absorption phase.
Abstract:Floor plans can provide valuable prior information that helps enhance the accuracy of indoor positioning systems. However, existing research typically faces challenges in efficiently leveraging floor plan information and applying it to complex indoor layouts. To fully exploit information from floor plans for positioning, we propose a floor plan-assisted fusion positioning algorithm (FP-BP) using Bluetooth low energy (BLE) and pedestrian dead reckoning (PDR). In the considered system, a user holding a smartphone walks through a positioning area with BLE beacons installed on the ceiling, and can locate himself in real time. In particular, FP-BP consists of two phases. In the offline phase, FP-BP programmatically extracts map features from a stylized floor plan based on their binary masks, and constructs a mapping function to identify the corresponding map feature of any given position on the map. In the online phase, FP-BP continuously computes BLE positions and PDR results from BLE signals and smartphone sensors, where a novel grid-based maximum likelihood estimation (GML) algorithm is introduced to enhance BLE positioning. Then, a particle filter is used to fuse them and obtain an initial estimate. Finally, FP-BP performs post-position correction to obtain the final position based on its specific map feature. Experimental results show that FP-BP can achieve a real-time mean positioning accuracy of 1.19 m, representing an improvement of over 28% compared to existing floor plan-fused baseline algorithms.
Abstract:Reconfigurable Intelligent Surface (RIS) has been recognized as a promising solution for enhancing localization accuracy. Traditional RIS-based localization methods typically rely on prior channel knowledge, beam scanning, and pilot-based assistance. These approaches often result in substantial energy and computational overhead, and require real-time coordination between the base station (BS) and the RIS. To address these challenges, in this work, we move beyond conventional methods and introduce a novel data-driven, multiple RISs-assisted passive localization approach (RAPL). The proposed method includes two stages, the angle-of-directions (AoDs) between the RISs and the user is estimated by using the conditional sample mean in the first stage, and then the user's position is determined based on the estimated multiple AoD pairs in the second stage. This approach only utilizes the existing communication signals between the user and the BS, relying solely on the measurement of received signal power at each BS antenna for a set of randomly generated phase shifts across all RISs. Moreover, by obviating the need for real-time RIS phase shift optimization or user-to-BS pilot transmissions, the method introduces no additional communication overhead, making it highly suitable for deployment in real-world networks. The proposed scheme is then extended to multi-RIS scenarios considering both parallel and cascaded RIS topologies. Numerical results show that the proposed RAPL improves localization accuracy while significantly reducing energy and signaling overhead compared to conventional methods.
Abstract:Reconfigurable intelligent surface (RIS) has been recognized as a promising solution for enhancing localization accuracy. Traditional RIS-based localization methods typically rely on prior channel knowledge, beam scanning, and pilot-based assistance. These approaches often result in substantial energy and computational overhead, and require real-time coordination between the base station (BS) and the RIS. In this work, we propose a novel multiple RISs aided localization approach to address these challenges. The proposed method first estimates the angle-of-directions (AoDs) between the RISs and the user using the conditional sample mean approach, and then uses the estimated multiple AoD pairs to determine the user's position. This approach only requires measuring the received signal strength at the BS for a set of randomly generated phase shifts across all RISs, thereby eliminating the need for real-time RIS phase shift design or user-to-BS pilot transmissions. Numerical results show that the proposed localization approach improves localization accuracy while significantly reducing energy and signaling overhead compared to conventional methods.
Abstract:In this paper, we investigate an accurate synchronization between a physical network and its digital network twin (DNT), which serves as a virtual representation of the physical network. The considered network includes a set of base stations (BSs) that must allocate its limited spectrum resources to serve a set of users while also transmitting its partially observed physical network information to a cloud server to generate the DNT. Since the DNT can predict the physical network status based on its historical status, the BSs may not need to send their physical network information at each time slot, allowing them to conserve spectrum resources to serve the users. However, if the DNT does not receive the physical network information of the BSs over a large time period, the DNT's accuracy in representing the physical network may degrade. To this end, each BS must decide when to send the physical network information to the cloud server to update the DNT, while also determining the spectrum resource allocation policy for both DNT synchronization and serving the users. We formulate this resource allocation task as an optimization problem, aiming to maximize the total data rate of all users while minimizing the asynchronization between the physical network and the DNT. To address this problem, we propose a method based on the GRUs and the value decomposition network (VDN). Simulation results show that our GRU and VDN based algorithm improves the weighted sum of data rates and the similarity between the status of the DNT and the physical network by up to 28.96%, compared to a baseline method combining GRU with the independent Q learning.
Abstract:This paper investigates a novel generative artificial intelligence (GAI) empowered multi-user semantic communication system called semantic feature multiple access (SFMA) for video transmission, which comprises a base station (BS) and paired users. The BS generates and combines semantic information of several frames simultaneously requested by paired users into a single signal. Users recover their frames from this combined signal and input the recovered frames into a GAI-based video frame interpolation model to generate the intermediate frame. To optimize transmission rates and temporal gaps between simultaneously transmitted frames, we formulate an optimization problem to maximize the system sum rate while minimizing temporal gaps. Since the standard signal-to-interference-plus-noise ratio (SINR) equation does not accurately capture the performance of our semantic communication system, we introduce a weight parameter into the SINR equation to better represent the system's performance. Due to its dependence on transmit power, we propose a three-step solution. First, we develop a user pairing algorithm that pairs two users with the highest preference value, a weighted combination of semantic transmission rate and temporal gap. Second, we optimize inter-group power allocation by formulating an optimization problem that allocates proper transmit power across all user groups to maximize system sum rates while satisfying each user's minimum rate requirement. Third, we address intra-group power allocation to enhance each user's performance. Simulation results demonstrate that our method improves transmission rates by up to 24.8%, 45.8%, and 66.1% compared to fixed-power non-orthogonal multiple access (F-NOMA), orthogonal joint source-channel coding (O-JSCC), and orthogonal frequency division multiple access (OFDMA), respectively.