Abstract:The generalization ability of deep learning has been extensively studied in supervised settings, yet it remains less explored in unsupervised scenarios. Recently, the Unsupervised Domain Generalization (UDG) task has been proposed to enhance the generalization of models trained with prevalent unsupervised learning techniques, such as Self-Supervised Learning (SSL). UDG confronts the challenge of distinguishing semantics from variations without category labels. Although some recent methods have employed domain labels to tackle this issue, such domain labels are often unavailable in real-world contexts. In this paper, we address these limitations by formalizing UDG as the task of learning a Minimal Sufficient Semantic Representation: a representation that (i) preserves all semantic information shared across augmented views (sufficiency), and (ii) maximally removes information irrelevant to semantics (minimality). We theoretically ground these objectives from the perspective of information theory, demonstrating that optimizing representations to achieve sufficiency and minimality directly reduces out-of-distribution risk. Practically, we implement this optimization through Minimal-Sufficient UDG (MS-UDG), a learnable model by integrating (a) an InfoNCE-based objective to achieve sufficiency; (b) two complementary components to promote minimality: a novel semantic-variation disentanglement loss and a reconstruction-based mechanism for capturing adequate variation. Empirically, MS-UDG sets a new state-of-the-art on popular unsupervised domain-generalization benchmarks, consistently outperforming existing SSL and UDG methods, without category or domain labels during representation learning.
Abstract:Positron emission tomography (PET) is a cornerstone of modern oncologic and neurologic imaging, distinguished by its unique ability to illuminate dynamic metabolic processes that transcend the anatomical focus of traditional imaging technologies. Radiology reports are essential for clinical decision making, yet their manual creation is labor-intensive and time-consuming. Recent advancements of vision-language models (VLMs) have shown strong potential in medical applications, presenting a promising avenue for automating report generation. However, existing applications of VLMs in the medical domain have predominantly focused on structural imaging modalities, while the unique characteristics of molecular PET imaging have largely been overlooked. To bridge the gap, we introduce PET2Rep, a large-scale comprehensive benchmark for evaluation of general and medical VLMs for radiology report generation for PET images. PET2Rep stands out as the first dedicated dataset for PET report generation with metabolic information, uniquely capturing whole-body image-report pairs that cover dozens of organs to fill the critical gap in existing benchmarks and mirror real-world clinical comprehensiveness. In addition to widely recognized natural language generation metrics, we introduce a series of clinical efficiency metrics to evaluate the quality of radiotracer uptake pattern description in key organs in generated reports. We conduct a head-to-head comparison of 30 cutting-edge general-purpose and medical-specialized VLMs. The results show that the current state-of-the-art VLMs perform poorly on PET report generation task, falling considerably short of fulfilling practical needs. Moreover, we identify several key insufficiency that need to be addressed to advance the development in medical applications.
Abstract:Large language models (LLMs) have demonstrated significant advancements in reasoning capabilities, performing well on various challenging benchmarks. Techniques like Chain-of-Thought prompting have been introduced to further improve reasoning. However, these approaches frequently generate longer outputs, which in turn increase computational latency. Although some methods use reinforcement learning to shorten reasoning, they often apply uniform penalties without considering the problem's complexity, leading to suboptimal outcomes. In this study, we seek to enhance the efficiency of LLM reasoning by promoting conciseness for simpler problems while preserving sufficient reasoning for more complex ones for accuracy, thus improving the model's overall performance. Specifically, we manage the model's reasoning efficiency by dividing the reward function and including a novel penalty for output length. Our approach has yielded impressive outcomes in benchmark evaluations across three datasets: GSM8K, MATH500, and AIME2024. For the comparatively simpler datasets GSM8K and MATH500, our method has effectively shortened output lengths while preserving or enhancing accuracy. On the more demanding AIME2024 dataset, our approach has resulted in improved accuracy.