Abstract:Traditional object detection systems are typically constrained to predefined categories, limiting their applicability in dynamic environments. In contrast, open-vocabulary object detection (OVD) enables the identification of objects from novel classes not present in the training set. Recent advances in visual-language modeling have led to significant progress of OVD. However, prior works face challenges in either adapting the single-scale image backbone from CLIP to the detection framework or ensuring robust visual-language alignment. We propose Visual-Language Detection (VLDet), a novel framework that revamps feature pyramid for fine-grained visual-language alignment, leading to improved OVD performance. With the VL-PUB module, VLDet effectively exploits the visual-language knowledge from CLIP and adapts the backbone for object detection through feature pyramid. In addition, we introduce the SigRPN block, which incorporates a sigmoid-based anchor-text contrastive alignment loss to improve detection of novel categories. Through extensive experiments, our approach achieves 58.7 AP for novel classes on COCO2017 and 24.8 AP on LVIS, surpassing all state-of-the-art methods and achieving significant improvements of 27.6% and 6.9%, respectively. Furthermore, VLDet also demonstrates superior zero-shot performance on closed-set object detection.
Abstract:Traditional speech systems typically rely on separate, task-specific models for text-to-speech (TTS), automatic speech recognition (ASR), and voice conversion (VC), resulting in fragmented pipelines that limit scalability, efficiency, and cross-task generalization. In this paper, we present General-Purpose Audio (GPA), a unified audio foundation model that integrates multiple core speech tasks within a single large language model (LLM) architecture. GPA operates on a shared discrete audio token space and supports instruction-driven task induction, enabling a single autoregressive model to flexibly perform TTS, ASR, and VC without architectural modifications. This unified design combines a fully autoregressive formulation over discrete speech tokens, joint multi-task training across speech domains, and a scalable inference pipeline that achieves high concurrency and throughput. The resulting model family supports efficient multi-scale deployment, including a lightweight 0.3B-parameter variant optimized for edge and resource-constrained environments. Together, these design choices demonstrate that a unified autoregressive architecture can achieve competitive performance across diverse speech tasks while remaining viable for low-latency, practical deployment.




Abstract:Drug recommendation (DR) systems aim to support healthcare professionals in selecting appropriate medications based on patients' medical conditions. State-of-the-art approaches utilize deep learning techniques for improving DR, but fall short in providing any insights on the derivation process of recommendations -- a critical limitation in such high-stake applications. We propose TraceDR, a novel DR system operating over a medical knowledge graph (MKG), which ensures access to large-scale and high-quality information. TraceDR simultaneously predicts drug recommendations and related evidence within a multi-task learning framework, enabling traceability of medication recommendations. For covering a more diverse set of diseases and drugs than existing works, we devise a framework for automatically constructing patient health records and release DrugRec, a new large-scale testbed for DR.




Abstract:Although fully-supervised oriented object detection has made significant progress in multimodal remote sensing image understanding, it comes at the cost of labor-intensive annotation. Recent studies have explored weakly and semi-supervised learning to alleviate this burden. However, these methods overlook the difficulties posed by dense annotations in complex remote sensing scenes. In this paper, we introduce a novel setting called sparsely annotated oriented object detection (SAOOD), which only labels partial instances, and propose a solution to address its challenges. Specifically, we focus on two key issues in the setting: (1) sparse labeling leading to overfitting on limited foreground representations, and (2) unlabeled objects (false negatives) confusing feature learning. To this end, we propose the S$^2$Teacher, a novel method that progressively mines pseudo-labels for unlabeled objects, from easy to hard, to enhance foreground representations. Additionally, it reweights the loss of unlabeled objects to mitigate their impact during training. Extensive experiments demonstrate that S$^2$Teacher not only significantly improves detector performance across different sparse annotation levels but also achieves near-fully-supervised performance on the DOTA dataset with only 10% annotation instances, effectively balancing detection accuracy with annotation efficiency. The code will be public.
Abstract:Efficiently synthesizing novel views from sparse inputs while maintaining accuracy remains a critical challenge in 3D reconstruction. While advanced techniques like radiance fields and 3D Gaussian Splatting achieve rendering quality and impressive efficiency with dense view inputs, they suffer from significant geometric reconstruction errors when applied to sparse input views. Moreover, although recent methods leverage monocular depth estimation to enhance geometric learning, their dependence on single-view estimated depth often leads to view inconsistency issues across different viewpoints. Consequently, this reliance on absolute depth can introduce inaccuracies in geometric information, ultimately compromising the quality of scene reconstruction with Gaussian splats. In this paper, we present RDG-GS, a novel sparse-view 3D rendering framework with Relative Depth Guidance based on 3D Gaussian Splatting. The core innovation lies in utilizing relative depth guidance to refine the Gaussian field, steering it towards view-consistent spatial geometric representations, thereby enabling the reconstruction of accurate geometric structures and capturing intricate textures. First, we devise refined depth priors to rectify the coarse estimated depth and insert global and fine-grained scene information to regular Gaussians. Building on this, to address spatial geometric inaccuracies from absolute depth, we propose relative depth guidance by optimizing the similarity between spatially correlated patches of depth and images. Additionally, we also directly deal with the sparse areas challenging to converge by the adaptive sampling for quick densification. Across extensive experiments on Mip-NeRF360, LLFF, DTU, and Blender, RDG-GS demonstrates state-of-the-art rendering quality and efficiency, making a significant advancement for real-world application.




Abstract:This paper addresses the problem of vision-based pedestrian localization, which estimates a pedestrian's location using images and camera parameters. In practice, however, calibrated camera parameters often deviate from the ground truth, leading to inaccuracies in localization. To address this issue, we propose an anchor-based method that leverages fixed-position anchors to reduce the impact of camera parameter errors. We provide a theoretical analysis that demonstrates the robustness of our approach. Experiments conducted on simulated, real-world, and public datasets show that our method significantly improves localization accuracy and remains resilient to noise in camera parameters, compared to methods without anchors.




Abstract:Medical generative models, acknowledged for their high-quality sample generation ability, have accelerated the fast growth of medical applications. However, recent works concentrate on separate medical generation models for distinct medical tasks and are restricted to inadequate medical multi-modal knowledge, constraining medical comprehensive diagnosis. In this paper, we propose MedM2G, a Medical Multi-Modal Generative framework, with the key innovation to align, extract, and generate medical multi-modal within a unified model. Extending beyond single or two medical modalities, we efficiently align medical multi-modal through the central alignment approach in the unified space. Significantly, our framework extracts valuable clinical knowledge by preserving the medical visual invariant of each imaging modal, thereby enhancing specific medical information for multi-modal generation. By conditioning the adaptive cross-guided parameters into the multi-flow diffusion framework, our model promotes flexible interactions among medical multi-modal for generation. MedM2G is the first medical generative model that unifies medical generation tasks of text-to-image, image-to-text, and unified generation of medical modalities (CT, MRI, X-ray). It performs 5 medical generation tasks across 10 datasets, consistently outperforming various state-of-the-art works.




Abstract:3D single object tracking (SOT) is an important and challenging task for the autonomous driving and mobile robotics. Most existing methods perform tracking between two consecutive frames while ignoring the motion patterns of the target over a series of frames, which would cause performance degradation in the scenes with sparse points. To break through this limitation, we introduce Sequence-to-Sequence tracking paradigm and a tracker named SeqTrack3D to capture target motion across continuous frames. Unlike previous methods that primarily adopted three strategies: matching two consecutive point clouds, predicting relative motion, or utilizing sequential point clouds to address feature degradation, our SeqTrack3D combines both historical point clouds and bounding box sequences. This novel method ensures robust tracking by leveraging location priors from historical boxes, even in scenes with sparse points. Extensive experiments conducted on large-scale datasets show that SeqTrack3D achieves new state-of-the-art performances, improving by 6.00% on NuScenes and 14.13% on Waymo dataset. The code will be made public at https://github.com/aron-lin/seqtrack3d.




Abstract:Medical vision-language pre-training (Med-VLP) models have recently accelerated the fast-growing medical diagnostics application. However, most Med-VLP models learn task-specific representations independently from scratch, thereby leading to great inflexibility when they work across multiple fine-tuning tasks. In this work, we propose UniDCP, a Unified medical vision-language model with Dynamic Cross-modal learnable Prompts, which can be plastically applied to multiple medical vision-language tasks. Specifically, we explicitly construct a unified framework to harmonize diverse inputs from multiple pretraining tasks by leveraging cross-modal prompts for unification, which accordingly can accommodate heterogeneous medical fine-tuning tasks. Furthermore, we conceive a dynamic cross-modal prompt optimizing strategy that optimizes the prompts within the shareable space for implicitly processing the shareable clinic knowledge. UniDCP is the first Med-VLP model capable of performing all 8 medical uni-modal and cross-modal tasks over 14 corresponding datasets, consistently yielding superior results over diverse state-of-the-art methods.
Abstract:As an emerging concept, steganography without embedding (SWE) hides a secret message without directly embedding it into a cover. Thus, SWE has the unique advantage of being immune to typical steganalysis methods and can better protect the secret message from being exposed. However, existing SWE methods are generally criticized for their poor payload capacity and low fidelity of recovered secret messages. In this paper, we propose a novel steganography-without-embedding technique, named DF-SWE, which addresses the aforementioned drawbacks and produces diverse and natural stego images. Specifically, DF-SWE employs a reversible circulation of double flow to build a reversible bijective transformation between the secret image and the generated stego image. Hence, it provides a way to directly generate stego images from secret images without a cover image. Besides leveraging the invertible property, DF-SWE can invert a secret image from a generated stego image in a nearly lossless manner and increases the fidelity of extracted secret images. To the best of our knowledge, DF-SWE is the first SWE method that can hide large images and multiple images into one image with the same size, significantly enhancing the payload capacity. According to the experimental results, the payload capacity of DF-SWE achieves 24-72 BPP is 8000-16000 times compared to its competitors while producing diverse images to minimize the exposure risk. Importantly, DF-SWE can be applied in the steganography of secret images in various domains without requiring training data from the corresponding domains. This domain-agnostic property suggests that DF-SWE can 1) be applied to hiding private data and 2) be deployed in resource-limited systems.