Alert button
Picture for Ying Sheng

Ying Sheng

Alert button

S-LoRA: Serving Thousands of Concurrent LoRA Adapters

Nov 07, 2023
Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang, Christopher Chou, Banghua Zhu, Lianmin Zheng, Kurt Keutzer, Joseph E. Gonzalez, Ion Stoica

The "pretrain-then-finetune" paradigm is commonly adopted in the deployment of large language models. Low-Rank Adaptation (LoRA), a parameter-efficient fine-tuning method, is often employed to adapt a base model to a multitude of tasks, resulting in a substantial collection of LoRA adapters derived from one base model. We observe that this paradigm presents significant opportunities for batched inference during serving. To capitalize on these opportunities, we present S-LoRA, a system designed for the scalable serving of many LoRA adapters. S-LoRA stores all adapters in the main memory and fetches the adapters used by the currently running queries to the GPU memory. To efficiently use the GPU memory and reduce fragmentation, S-LoRA proposes Unified Paging. Unified Paging uses a unified memory pool to manage dynamic adapter weights with different ranks and KV cache tensors with varying sequence lengths. Additionally, S-LoRA employs a novel tensor parallelism strategy and highly optimized custom CUDA kernels for heterogeneous batching of LoRA computation. Collectively, these features enable S-LoRA to serve thousands of LoRA adapters on a single GPU or across multiple GPUs with a small overhead. Compared to state-of-the-art libraries such as HuggingFace PEFT and vLLM (with naive support of LoRA serving), S-LoRA can improve the throughput by up to 4 times and increase the number of served adapters by several orders of magnitude. As a result, S-LoRA enables scalable serving of many task-specific fine-tuned models and offers the potential for large-scale customized fine-tuning services. The code is available at https://github.com/S-LoRA/S-LoRA

Viaarxiv icon

Clover: Closed-Loop Verifiable Code Generation

Oct 26, 2023
Chuyue Sun, Ying Sheng, Oded Padon, Clark Barrett

The use of large language models for code generation is a rapidly growing trend in software development. However, without effective methods for ensuring the correctness of generated code, this trend could lead to any number of undesirable outcomes. In this paper, we lay out a vision for addressing this challenge: the Clover paradigm, short for Closed-Loop Verifiable Code Generation, which reduces correctness checking to the more accessible problem of consistency checking. At the core of Clover lies a checker that performs consistency checks among code, docstrings, and formal annotations. The checker is implemented using a novel integration of formal verification tools and large language models. We provide a theoretical analysis to support our thesis that Clover should be effective at consistency checking. We also empirically investigate its feasibility on a hand-designed dataset (CloverBench) featuring annotated Dafny programs at a textbook level of difficulty. Experimental results show that for this dataset, (i) LLMs are reasonably successful at automatically generating formal specifications; and (ii) our consistency checker achieves a promising acceptance rate (up to 87%) for correct instances while maintaining zero tolerance for incorrect ones (no false positives).

Viaarxiv icon

LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset

Sep 30, 2023
Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zhuohan Li, Zi Lin, Eric. P Xing, Joseph E. Gonzalez, Ion Stoica, Hao Zhang

Figure 1 for LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset
Figure 2 for LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset
Figure 3 for LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset
Figure 4 for LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset

Studying how people interact with large language models (LLMs) in real-world scenarios is increasingly important due to their widespread use in various applications. In this paper, we introduce LMSYS-Chat-1M, a large-scale dataset containing one million real-world conversations with 25 state-of-the-art LLMs. This dataset is collected from 210K unique IP addresses in the wild on our Vicuna demo and Chatbot Arena website. We offer an overview of the dataset's content, including its curation process, basic statistics, and topic distribution, highlighting its diversity, originality, and scale. We demonstrate its versatility through four use cases: developing content moderation models that perform similarly to GPT-4, building a safety benchmark, training instruction-following models that perform similarly to Vicuna, and creating challenging benchmark questions. We believe that this dataset will serve as a valuable resource for understanding and advancing LLM capabilities. The dataset is publicly available at https://huggingface.co/datasets/lmsys/lmsys-chat-1m.

Viaarxiv icon

Efficient Memory Management for Large Language Model Serving with PagedAttention

Sep 12, 2023
Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, Ion Stoica

Figure 1 for Efficient Memory Management for Large Language Model Serving with PagedAttention
Figure 2 for Efficient Memory Management for Large Language Model Serving with PagedAttention
Figure 3 for Efficient Memory Management for Large Language Model Serving with PagedAttention
Figure 4 for Efficient Memory Management for Large Language Model Serving with PagedAttention

High throughput serving of large language models (LLMs) requires batching sufficiently many requests at a time. However, existing systems struggle because the key-value cache (KV cache) memory for each request is huge and grows and shrinks dynamically. When managed inefficiently, this memory can be significantly wasted by fragmentation and redundant duplication, limiting the batch size. To address this problem, we propose PagedAttention, an attention algorithm inspired by the classical virtual memory and paging techniques in operating systems. On top of it, we build vLLM, an LLM serving system that achieves (1) near-zero waste in KV cache memory and (2) flexible sharing of KV cache within and across requests to further reduce memory usage. Our evaluations show that vLLM improves the throughput of popular LLMs by 2-4$\times$ with the same level of latency compared to the state-of-the-art systems, such as FasterTransformer and Orca. The improvement is more pronounced with longer sequences, larger models, and more complex decoding algorithms. vLLM's source code is publicly available at https://github.com/vllm-project/vllm

* SOSP 2023 
Viaarxiv icon

H$_2$O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models

Jul 19, 2023
Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, Beidi Chen

Figure 1 for H$_2$O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models
Figure 2 for H$_2$O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models
Figure 3 for H$_2$O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models
Figure 4 for H$_2$O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models

Large Language Models (LLMs), despite their recent impressive accomplishments, are notably cost-prohibitive to deploy, particularly for applications involving long-content generation, such as dialogue systems and story writing. Often, a large amount of transient state information, referred to as the KV cache, is stored in GPU memory in addition to model parameters, scaling linearly with the sequence length and batch size. In this paper, we introduce a novel approach for implementing the KV cache which significantly reduces its memory footprint. Our approach is based on the noteworthy observation that a small portion of tokens contributes most of the value when computing attention scores. We call these tokens Heavy Hitters (H$_2$). Through a comprehensive investigation, we find that (i) the emergence of H$_2$ is natural and strongly correlates with the frequent co-occurrence of tokens in the text, and (ii) removing them results in significant performance degradation. Based on these insights, we propose Heavy Hitter Oracle (H$_2$O), a KV cache eviction policy that dynamically retains a balance of recent and H$_2$ tokens. We formulate the KV cache eviction as a dynamic submodular problem and prove (under mild assumptions) a theoretical guarantee for our novel eviction algorithm which could help guide future work. We validate the accuracy of our algorithm with OPT, LLaMA, and GPT-NeoX across a wide range of tasks. Our implementation of H$_2$O with 20% heavy hitters improves the throughput over three leading inference systems DeepSpeed Zero-Inference, Hugging Face Accelerate, and FlexGen by up to 29$\times$, 29$\times$, and 3$\times$ on OPT-6.7B and OPT-30B. With the same batch size, H2O can reduce the latency by up to 1.9$\times$. The code is available at https://github.com/FMInference/H2O.

Viaarxiv icon

Judging LLM-as-a-judge with MT-Bench and Chatbot Arena

Jun 09, 2023
Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, Ion Stoica

Figure 1 for Judging LLM-as-a-judge with MT-Bench and Chatbot Arena
Figure 2 for Judging LLM-as-a-judge with MT-Bench and Chatbot Arena
Figure 3 for Judging LLM-as-a-judge with MT-Bench and Chatbot Arena
Figure 4 for Judging LLM-as-a-judge with MT-Bench and Chatbot Arena

Evaluating large language model (LLM) based chat assistants is challenging due to their broad capabilities and the inadequacy of existing benchmarks in measuring human preferences. To address this, we explore using strong LLMs as judges to evaluate these models on more open-ended questions. We examine the usage and limitations of LLM-as-a-judge, such as position and verbosity biases and limited reasoning ability, and propose solutions to migrate some of them. We then verify the agreement between LLM judges and human preferences by introducing two benchmarks: MT-bench, a multi-turn question set; and Chatbot Arena, a crowdsourced battle platform. Our results reveal that strong LLM judges like GPT-4 can match both controlled and crowdsourced human preferences well, achieving over 80\% agreement, the same level of agreement between humans. Hence, LLM-as-a-judge is a scalable and explainable way to approximate human preferences, which are otherwise very expensive to obtain. Additionally, we show our benchmark and traditional benchmarks complement each other by evaluating several variants of LLaMA/Vicuna. We will publicly release 80 MT-bench questions, 3K expert votes, and 30K conversations with human preferences from Chatbot Arena.

Viaarxiv icon

On Optimal Caching and Model Multiplexing for Large Model Inference

Jun 03, 2023
Banghua Zhu, Ying Sheng, Lianmin Zheng, Clark Barrett, Michael I. Jordan, Jiantao Jiao

Figure 1 for On Optimal Caching and Model Multiplexing for Large Model Inference
Figure 2 for On Optimal Caching and Model Multiplexing for Large Model Inference
Figure 3 for On Optimal Caching and Model Multiplexing for Large Model Inference
Figure 4 for On Optimal Caching and Model Multiplexing for Large Model Inference

Large Language Models (LLMs) and other large foundation models have achieved noteworthy success, but their size exacerbates existing resource consumption and latency challenges. In particular, the large-scale deployment of these models is hindered by the significant resource requirements during inference. In this paper, we study two approaches for mitigating these challenges: employing a cache to store previous queries and learning a model multiplexer to choose from an ensemble of models for query processing. Theoretically, we provide an optimal algorithm for jointly optimizing both approaches to reduce the inference cost in both offline and online tabular settings. By combining a caching algorithm, namely Greedy Dual Size with Frequency (GDSF) or Least Expected Cost (LEC), with a model multiplexer, we achieve optimal rates in both offline and online settings. Empirically, simulations show that the combination of our caching and model multiplexing algorithms greatly improves over the baselines, with up to $50\times$ improvement over the baseline when the ratio between the maximum cost and minimum cost is $100$. Experiments on real datasets show a $4.3\times$ improvement in FLOPs over the baseline when the ratio for FLOPs is $10$, and a $1.8\times$ improvement in latency when the ratio for average latency is $1.85$.

Viaarxiv icon

High-throughput Generative Inference of Large Language Models with a Single GPU

Mar 13, 2023
Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y. Fu, Zhiqiang Xie, Beidi Chen, Clark Barrett, Joseph E. Gonzalez, Percy Liang, Christopher Ré, Ion Stoica, Ce Zhang

Figure 1 for High-throughput Generative Inference of Large Language Models with a Single GPU
Figure 2 for High-throughput Generative Inference of Large Language Models with a Single GPU
Figure 3 for High-throughput Generative Inference of Large Language Models with a Single GPU
Figure 4 for High-throughput Generative Inference of Large Language Models with a Single GPU

The high computational and memory requirements of large language model (LLM) inference traditionally make it feasible only with multiple high-end accelerators. Motivated by the emerging demand for latency-insensitive tasks with batched processing, this paper initiates the study of high-throughput LLM inference using limited resources, such as a single commodity GPU. We present FlexGen, a high-throughput generation engine for running LLMs with limited GPU memory. FlexGen can be flexibly configured under various hardware resource constraints by aggregating memory and computation from the GPU, CPU, and disk. Through a linear programming optimizer, it searches for efficient patterns to store and access tensors. FlexGen further compresses these weights and the attention cache to 4 bits with negligible accuracy loss. These techniques enable FlexGen to have a larger space of batch size choices and thus significantly increase maximum throughput. As a result, when running OPT-175B on a single 16GB GPU, FlexGen achieves significantly higher throughput compared to state-of-the-art offloading systems, reaching a generation throughput of 1 token/s for the first time with an effective batch size of 144. On the HELM benchmark, FlexGen can benchmark a 30B model with a 16GB GPU on 7 representative sub-scenarios in 21 hours. The code is available at https://github.com/FMInference/FlexGen

Viaarxiv icon