Abstract:Serving large language models (LLMs) is expensive, especially for providers hosting many models, making cost reduction essential. The unique workload patterns of serving multiple LLMs (i.e., multi-LLM serving) create new opportunities and challenges for this task. The long-tail popularity of models and their long idle periods present opportunities to improve utilization through GPU sharing. However, existing GPU sharing systems lack the ability to adjust their resource allocation and sharing policies at runtime, making them ineffective at meeting latency service-level objectives (SLOs) under rapidly fluctuating workloads. This paper presents Prism, a multi-LLM serving system that unleashes the full potential of GPU sharing to achieve both cost efficiency and SLO attainment. At its core, Prism tackles a key limitation of existing systems$\unicode{x2014}$the lack of $\textit{cross-model memory coordination}$, which is essential for flexibly sharing GPU memory across models under dynamic workloads. Prism achieves this with two key designs. First, it supports on-demand memory allocation by dynamically mapping physical to virtual memory pages, allowing flexible memory redistribution among models that space- and time-share a GPU. Second, it improves memory efficiency through a two-level scheduling policy that dynamically adjusts sharing strategies based on models' runtime demands. Evaluations on real-world traces show that Prism achieves more than $2\times$ cost savings and $3.3\times$ SLO attainment compared to state-of-the-art systems.
Abstract:Multimodal sentiment analysis is an active research area that combines multiple data modalities, e.g., text, image and audio, to analyze human emotions and benefits a variety of applications. Existing multimodal sentiment analysis methods can be classified as modality interaction-based methods, modality transformation-based methods and modality similarity-based methods. However, most of these methods highly rely on the strong correlations between modalities, and cannot fully uncover and utilize the correlations between modalities to enhance sentiment analysis. Therefore, these methods usually achieve bad performance for identifying the sentiment of multimodal data with weak correlations. To address this issue, we proposed a two-stage semi-supervised model termed Correlation-aware Multimodal Transformer (CorMulT) which consists pre-training stage and prediction stage. At the pre-training stage, a modality correlation contrastive learning module is designed to efficiently learn modality correlation coefficients between different modalities. At the prediction stage, the learned correlation coefficients are fused with modality representations to make the sentiment prediction. According to the experiments on the popular multimodal dataset CMU-MOSEI, CorMulT obviously surpasses state-of-the-art multimodal sentiment analysis methods.