Abstract:Personalized Federated Learning (PFL) aims to acquire customized models for each client without disclosing raw data by leveraging the collective knowledge of distributed clients. However, the data collected in real-world scenarios is likely to follow a long-tailed distribution. For example, in the medical domain, it is more common for the number of general health notes to be much larger than those specifically relatedto certain diseases. The presence of long-tailed data can significantly degrade the performance of PFL models. Additionally, due to the diverse environments in which each client operates, data heterogeneity is also a classic challenge in federated learning. In this paper, we explore the joint problem of global long-tailed distribution and data heterogeneity in PFL and propose a method called Expert Collaborative Learning (ECL) to tackle this problem. Specifically, each client has multiple experts, and each expert has a different training subset, which ensures that each class, especially the minority classes, receives sufficient training. Multiple experts collaborate synergistically to produce the final prediction output. Without special bells and whistles, the vanilla ECL outperforms other state-of-the-art PFL methods on several benchmark datasets under different degrees of data heterogeneity and long-tailed distribution.
Abstract:Safe maneuvering capability is critical for mobile robots in complex environments. However, robotic system dynamics are often time-varying, uncertain, or even unknown during the motion planning and control process. Therefore, many existing model-based reinforcement learning (RL) methods could not achieve satisfactory reliability in guaranteeing safety. To address this challenge, we propose a two-level Vector Field-guided Learning Predictive Control (VF-LPC) approach that guarantees safe maneuverability. The first level, the guiding level, generates safe desired trajectories using the designed kinodynamic guiding vector field, enabling safe motion in obstacle-dense environments. The second level, the Integrated Motion Planning and Control (IMPC) level, first uses the deep Koopman operator to learn a nominal dynamics model offline and then updates the model uncertainties online using sparse Gaussian processes (GPs). The learned dynamics and game-based safe barrier function are then incorporated into the learning predictive control framework to generate near-optimal control sequences. We conducted tests to compare the performance of VF-LPC with existing advanced planning methods in an obstacle-dense environment. The simulation results show that it can generate feasible trajectories quickly. Then, VF-LPC is evaluated against motion planning methods that employ model predictive control (MPC) and RL in high-fidelity CarSim software. The results show that VF-LPC outperforms them under metrics of completion time, route length, and average solution time. We also carried out path-tracking control tests on a racing road to validate the model uncertainties learning capability. Finally, we conducted real-world experiments on a Hongqi E-HS3 vehicle, further validating the VF-LPC approach's effectiveness.
Abstract:Unsupervised Visible-Infrared Person Re-identification (USVI-ReID) presents a formidable challenge, which aims to match pedestrian images across visible and infrared modalities without any annotations. Recently, clustered pseudo-label methods have become predominant in USVI-ReID, although the inherent noise in pseudo-labels presents a significant obstacle. Most existing works primarily focus on shielding the model from the harmful effects of noise, neglecting to calibrate noisy pseudo-labels usually associated with hard samples, which will compromise the robustness of the model. To address this issue, we design a Robust Pseudo-label Learning with Neighbor Relation (RPNR) framework for USVI-ReID. To be specific, we first introduce a straightforward yet potent Noisy Pseudo-label Calibration module to correct noisy pseudo-labels. Due to the high intra-class variations, noisy pseudo-labels are difficult to calibrate completely. Therefore, we introduce a Neighbor Relation Learning module to reduce high intra-class variations by modeling potential interactions between all samples. Subsequently, we devise an Optimal Transport Prototype Matching module to establish reliable cross-modality correspondences. On that basis, we design a Memory Hybrid Learning module to jointly learn modality-specific and modality-invariant information. Comprehensive experiments conducted on two widely recognized benchmarks, SYSU-MM01 and RegDB, demonstrate that RPNR outperforms the current state-of-the-art GUR with an average Rank-1 improvement of 10.3%. The source codes will be released soon.
Abstract:The vision-language pre-training has enabled deep models to make a huge step forward in generalizing across unseen domains. The recent learning method based on the vision-language pre-training model is a great tool for domain generalization and can solve this problem to a large extent. However, there are still some issues that an advancement still suffers from trading-off between domain invariance and class separability, which are crucial in current DG problems. However, there are still some issues that an advancement still suffers from trading-off between domain invariance and class separability, which are crucial in current DG problems. In this paper, we introduce a novel prompt learning strategy that leverages deep vision prompts to address domain invariance while utilizing language prompts to ensure class separability, coupled with adaptive weighting mechanisms to balance domain invariance and class separability. Extensive experiments demonstrate that deep vision prompts effectively extract domain-invariant features, significantly improving the generalization ability of deep models and achieving state-of-the-art performance on three datasets.
Abstract:Existing continual learning literature relies heavily on a strong assumption that tasks arrive with a balanced data stream, which is often unrealistic in real-world applications. In this work, we explore task-imbalanced continual learning (TICL) scenarios where the distribution of task data is non-uniform across the whole learning process. We find that imbalanced tasks significantly challenge the capability of models to control the trade-off between stability and plasticity from the perspective of recent prompt-based continual learning methods. On top of the above finding, we propose Dynamically Anchored Prompting (DAP), a prompt-based method that only maintains a single general prompt to adapt to the shifts within a task stream dynamically. This general prompt is regularized in the prompt space with two specifically designed prompt anchors, called boosting anchor and stabilizing anchor, to balance stability and plasticity in TICL. Remarkably, DAP achieves this balance by only storing a prompt across the data stream, therefore offering a substantial advantage in rehearsal-free CL. Extensive experiments demonstrate that the proposed DAP results in 4.5% to 15% absolute improvements over state-of-the-art methods on benchmarks under task-imbalanced settings. Our code is available at https://github.com/chenxing6666/DAP
Abstract:Graph neural networks (GNNs) have been regarded as the basic model to facilitate deep learning (DL) to revolutionize resource allocation in wireless networks. GNN-based models are shown to be able to learn the structural information about graphs representing the wireless networks to adapt to the time-varying channel state information and dynamics of network topology. This article aims to provide a comprehensive overview of applying GNNs to optimize wireless networks via answering three fundamental questions, i.e., how to input the wireless network data into GNNs, how to improve the performance of GNNs, and how to evaluate GNNs. Particularly, two graph representations are given to transform wireless network parameters into graph-structured data. Then, we focus on the architecture design of the GNN-based models via introducing the basic message passing as well as model improvement methods including multi-head attention mechanism and residual structure. At last, we give task-oriented evaluation metrics for DL-enabled wireless resource allocation. We also highlight certain challenges and potential research directions for the application of GNNs in wireless networks.
Abstract:This paper investigates artificial intelligence (AI) empowered schemes for reconfigurable intelligent surface (RIS) assisted networks from the perspective of fast implementation. We formulate a weighted sum-rate maximization problem for a multi-RIS-assisted network. To avoid huge channel estimation overhead due to activate all RISs, we propose a computer vision (CV) enabled RIS selection scheme based on a single shot multi-box detector. To realize real-time resource allocation, a deep neural network (DNN) enabled transmit design is developed to learn the optimal mapping from channel information to transmit beamformers and phase shift matrix. Numerical results illustrate that the CV module is able to select of RIS with the best propagation condition. The well-trained DNN achieves similar sum-rate performance to the existing alternative optimization method but with much smaller inference time.
Abstract:In the field of data mining and machine learning, commonly used classification models cannot effectively learn in unbalanced data. In order to balance the data distribution before model training, oversampling methods are often used to generate data for a small number of classes to solve the problem of classifying unbalanced data. Most of the classical oversampling methods are based on the SMOTE technique, which only focuses on the local information of the data, and therefore the generated data may have the problem of not being realistic enough. In the current oversampling methods based on generative networks, the methods based on GANs can capture the true distribution of data, but there is the problem of pattern collapse and training instability in training; in the oversampling methods based on denoising diffusion probability models, the neural network of the inverse diffusion process using the U-Net is not applicable to tabular data, and although the MLP can be used to replace the U-Net, the problem exists due to the simplicity of the structure and the poor effect of removing noise. problem of poor noise removal. In order to overcome the above problems, we propose a novel oversampling method SEMRes-DDPM.In the SEMRes-DDPM backward diffusion process, a new neural network structure SEMST-ResNet is used, which is suitable for tabular data and has good noise removal effect, and it can generate tabular data with higher quality. Experiments show that the SEMResNet network removes noise better than MLP; SEMRes-DDPM generates data distributions that are closer to the real data distributions than TabDDPM with CWGAN-GP; on 20 real unbalanced tabular datasets with 9 classification models, SEMRes-DDPM improves the quality of the generated tabular data in terms of three evaluation metrics (F1, G-mean, AUC) with better classification performance than other SOTA oversampling methods.
Abstract:Surface defect inspection plays an important role in the process of industrial manufacture and production. Though Convolutional Neural Network (CNN) based defect inspection methods have made huge leaps, they still confront a lot of challenges such as defect scale variation, complex background, low contrast, and so on. To address these issues, we propose a joint attention-guided feature fusion network (JAFFNet) for saliency detection of surface defects based on the encoder-decoder network. JAFFNet mainly incorporates a joint attention-guided feature fusion (JAFF) module into decoding stages to adaptively fuse low-level and high-level features. The JAFF module learns to emphasize defect features and suppress background noise during feature fusion, which is beneficial for detecting low-contrast defects. In addition, JAFFNet introduces a dense receptive field (DRF) module following the encoder to capture features with rich context information, which helps detect defects of different scales. The JAFF module mainly utilizes a learned joint channel-spatial attention map provided by high-level semantic features to guide feature fusion. The attention map makes the model pay more attention to defect features. The DRF module utilizes a sequence of multi-receptive-field (MRF) units with each taking as inputs all the preceding MRF feature maps and the original input. The obtained DRF features capture rich context information with a large range of receptive fields. Extensive experiments conducted on SD-saliency-900, Magnetic tile, and DAGM 2007 indicate that our method achieves promising performance in comparison with other state-of-the-art methods. Meanwhile, our method reaches a real-time defect detection speed of 66 FPS.
Abstract:Wireless sensor network (WSN) underpinning the smart-grid Internet of Things (SG-IoT) has been a popular research topic in recent years due to its great potential for enabling a wide range of important applications. However, the energy consumption (EC) characteristic of sensor nodes is a key factor that affects the operational performance (e.g., lifetime of sensors) and the total cost of ownership of WSNs. In this paper, to find the modulation techniques suitable for WSNs, we investigate the EC characteristic of continuous phase modulation (CPM), which is an attractive modulation scheme candidate for WSNs because of its constant envelope property. We first develop an EC model for the sensor nodes of WSNs by considering the circuits and a typical communication protocol that relies on automatic repeat request (ARQ)-based retransmissions to ensure successful data delivery. Then, we use this model to analyze the EC characteristic of CPM under various configurations of modulation parameters. Furthermore, we compare the EC characteristic of CPM with that of other representative modulation schemes, such as offset quadrature phase-shift keying (OQPSK) and quadrature amplitude modulation (QAM), which are commonly used in communication protocols of WSNs. Our analysis and simulation results provide insights into the EC characteristics of multiple modulation schemes in the context of WSNs; thus, they are beneficial for designing energy-efficient SG-IoT in the beyond-5G (B5G) and the 6G era.